Suppr超能文献

一种用于组合文库设计的可扩展方法。

A scalable approach to combinatorial library design.

作者信息

Sharma Puneet, Salapaka Srinivasa, Beck Carolyn

机构信息

Integrated Data Systems Department, Siemens Corporate Research, Princeton, NJ, USA.

出版信息

Methods Mol Biol. 2011;685:71-89. doi: 10.1007/978-1-60761-931-4_4.

Abstract

In this chapter, we describe an algorithm for the design of lead-generation libraries required in combinatorial drug discovery. This algorithm addresses simultaneously the two key criteria of diversity and representativeness of compounds in the resulting library and is computationally efficient when applied to a large class of lead-generation design problems. At the same time, additional constraints on experimental resources are also incorporated in the framework presented in this chapter. A computationally efficient scalable algorithm is developed, where the ability of the deterministic annealing algorithm to identify clusters is exploited to truncate computations over the entire dataset to computations over individual clusters. An analysis of this algorithm quantifies the trade-off between the error due to truncation and computational effort. Results applied on test datasets corroborate the analysis and show improvement by factors as large as ten or more depending on the datasets.

摘要

在本章中,我们描述了一种用于组合药物发现中所需的先导化合物生成库设计的算法。该算法同时满足了所得库中化合物多样性和代表性这两个关键标准,并且在应用于一大类先导化合物生成设计问题时计算效率很高。同时,本章所提出的框架中还纳入了对实验资源的额外限制。我们开发了一种计算效率高的可扩展算法,利用确定性退火算法识别聚类的能力,将对整个数据集的计算截断为对单个聚类的计算。对该算法的分析量化了截断误差与计算量之间的权衡。应用于测试数据集的结果证实了该分析,并表明根据数据集的不同,改进因子可达十倍或更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验