Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo, s/n, 43007, Tarragona, Spain.
J Phys Chem A. 2010 Nov 25;114(46):12291-8. doi: 10.1021/jp106038w. Epub 2010 Oct 28.
Isotropic deviations to the standard Heisenberg Hamiltonian have been extracted for a series of trinuclear extended metal atom chain complexes, namely, [Ni(3)(dpa)(4)Cl(2)], and the hypothetical [NiPdNi(dpa)(4)Cl(2)] and [Pd(3)(dpa)(4)Cl(2)], following a scheme recently proposed by Labéguerie and co-workers (J. Chem. Phys 2008, 129, 154110) within the density functional theory framework. Energy calculations of broken symmetry monodeterminantal solutions of intermediate M(s,tot.) values can provide an estimate of the magnitude of the biquadratic exchange interaction (λ) that accounts for these deviations in systems with S = 1 magnetic sites. With the B3LYP functional, we obtain λ = 1.37, 13.8, and 498 cm(-1) for the three molecules, respectively, meaning that a simple Heisenberg Hamiltonian is enough for describing the magnetic behavior of the Ni(3) complex but definitely not for Pd(3). In the latter case, the origin of such extreme deviation arises from (i) an energetically affordable local non-Hund state (small intrasite exchange integral, K ∼ 1960 cm(-1)) and (ii) a very effective overlap between Pd-4d orbitals and a large J. Furthermore, this procedure enables us to determine the relative weights of the two types of magnetic interactions, σ- and δ-like, that contribute to the total magnetic exchange (J = J(σ) + J(δ)). In all of the systems, J is governed by the σ interaction by 95-98%.
已从一系列三核扩展金属原子链配合物(即[Ni(3)(dpa)(4)Cl(2)])中提取了标准海森堡哈密顿量的各向同性偏差,并根据最近由 Labéguerie 及其同事提出的方案(J. Chem. Phys. 2008, 129, 154110),在密度泛函理论框架内提取了假设的[NiPdNi(dpa)(4)Cl(2)]和[Pd(3)(dpa)(4)Cl(2)]中的各向同性偏差。中间 M(s,tot.)值的非对称单行列式解的能量计算可以估计双二次交换相互作用(λ)的大小,该相互作用可解释 S = 1 磁位点系统中的这些偏差。对于这三个分子,我们分别使用 B3LYP 函数获得 λ = 1.37、13.8 和 498 cm(-1),这意味着简单的海森堡哈密顿量足以描述 Ni(3)配合物的磁性行为,但对于 Pd(3)肯定不够。在后一种情况下,这种极端偏差的产生源于(i)一种在能量上可承受的局部非 Hund 态(较小的局域交换积分,K ∼ 1960 cm(-1)) 和(ii)Pd-4d 轨道之间非常有效的重叠和较大的 J。此外,该程序使我们能够确定两种类型的磁性相互作用(σ-和 δ-型)对总磁交换(J = J(σ) + J(δ))的相对权重。在所有系统中,J 都由 σ 相互作用控制,占 95-98%。