Suppr超能文献

结核分枝杆菌阿拉伯半乳聚糖中半乳糖胺取代基的生物合成来源。

Biosynthetic origin of the galactosamine substituent of Arabinogalactan in Mycobacterium tuberculosis.

机构信息

Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA.

出版信息

J Biol Chem. 2010 Dec 31;285(53):41348-55. doi: 10.1074/jbc.M110.188110. Epub 2010 Oct 28.

Abstract

The arabinogalactan (AG) of slow growing pathogenic Mycobacterium spp. is characterized by the presence of galactosamine (GalN) modifying some of the interior branched arabinosyl residues. The biosynthetic origin of this substituent and its role(s) in the physiology and/or pathogenicity of mycobacteria are not known. We report on the discovery of a polyprenyl-phospho-N-acetylgalactosaminyl synthase (PpgS) and the glycosyltransferase Rv3779 from Mycobacterium tuberculosis required, respectively, for providing and transferring the GalN substrate for the modification of AG. Disruption of either ppgS (Rv3631) or Rv3779 totally abolished the synthesis of the GalN substituent of AG in M. tuberculosis H37Rv. Conversely, expression of ppgS in Mycobacterium smegmatis conferred upon this species otherwise devoid of ppgS ortholog and any detectable polyprenyl-phospho-N-acetylgalactosaminyl synthase activity the ability to synthesize polyprenyl-phospho-N-acetylgalactosamine (polyprenyl-P-GalNAc) from polyprenyl-P and UDP-GalNAc. Interestingly, this catalytic activity was increased 40-50-fold by co-expressing Rv3632, the encoding gene of a small membrane protein apparently co-transcribed with ppgS in M. tuberculosis H37Rv. The discovery of this novel lipid-linked sugar donor and the involvement of a the glycosyltransferase C-type glycosyltransferase in its transfer onto its final acceptor suggest that pathogenic mycobacteria modify AG on the periplasmic side of the plasma membrane. The availability of a ppgS knock-out mutant of M. tuberculosis provides unique opportunities to investigate the physiological function of the GalN substituent and the potential impact it may have on host-pathogen interactions.

摘要

阿拉伯半乳聚糖(AG)的缓慢生长的致病性分枝杆菌 spp. 的特点是存在半乳糖胺(GalN)修饰的一些内部分支阿拉伯呋喃基残基。这种取代基的生物合成起源及其在分枝杆菌的生理学和/或致病性中的作用尚不清楚。我们报告了聚异戊二烯磷酸-N-乙酰半乳糖胺基合酶(PpgS)和来自结核分枝杆菌的糖基转移酶 Rv3779 的发现,它们分别负责提供和转移用于修饰 AG 的 GalN 底物。ppgS(Rv3631)或 Rv3779 的缺失完全消除了结核分枝杆菌 H37Rv 中 AG 的 GalN 取代物的合成。相反,ppgS 在耻垢分枝杆菌中的表达赋予了该种缺乏 ppgS 同源物和任何可检测的聚异戊二烯磷酸-N-乙酰半乳糖胺基合酶活性的能力,能够从聚异戊二烯-P 和 UDP-GalNAc 合成聚异戊二烯磷酸-N-乙酰半乳糖胺(聚异戊二烯-P-GalNAc)。有趣的是,这种催化活性通过共表达 Rv3632 增加了 40-50 倍,Rv3632 是一种小膜蛋白的编码基因,在结核分枝杆菌 H37Rv 中与 ppgS 明显共转录。这种新型脂质连接糖供体的发现以及 C 型糖基转移酶在其转移到最终受体上的参与表明,致病性分枝杆菌在质膜的周质侧修饰 AG。结核分枝杆菌 ppgS 敲除突变体的可用性为研究 GalN 取代基的生理功能及其对宿主-病原体相互作用的潜在影响提供了独特的机会。

相似文献

1
Biosynthetic origin of the galactosamine substituent of Arabinogalactan in Mycobacterium tuberculosis.
J Biol Chem. 2010 Dec 31;285(53):41348-55. doi: 10.1074/jbc.M110.188110. Epub 2010 Oct 28.
3
The galactosamine residue in mycobacterial arabinogalactan is α-linked.
J Org Chem. 2012 Nov 2;77(21):9826-32. doi: 10.1021/jo301393s. Epub 2012 Oct 17.
5
6
Galactosamine in walls of slow-growing mycobacteria.
Biochem J. 1997 Oct 15;327 ( Pt 2)(Pt 2):519-25. doi: 10.1042/bj3270519.
9
Polyprenyl phosphate biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis.
J Bacteriol. 2000 Oct;182(20):5771-8. doi: 10.1128/JB.182.20.5771-5778.2000.

引用本文的文献

1
Lipoic acid as a protective agent against lipopolysaccharide and other natural toxins: a comprehensive review.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr 14. doi: 10.1007/s00210-025-04123-w.
2
Regulatory role of MtrA on dormancy/resuscitation revealed by a novel target gene-mining strategy.
Front Microbiol. 2024 Jun 17;15:1415554. doi: 10.3389/fmicb.2024.1415554. eCollection 2024.
4
Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall.
Cell Surf. 2020 Sep 2;6:100044. doi: 10.1016/j.tcsw.2020.100044. eCollection 2020 Dec.
5
Biosynthesis of Galactan in as a Viable TB Drug Target?
Antibiotics (Basel). 2020 Jan 6;9(1):20. doi: 10.3390/antibiotics9010020.
6
Prospecting for microbial α--acetylgalactosaminidases yields a new class of GH31 -glycanase.
J Biol Chem. 2019 Nov 1;294(44):16400-16415. doi: 10.1074/jbc.RA119.010628. Epub 2019 Sep 17.
7
Specific Binding Peptides from Rv3632: A Strategy for Blocking Entry to Target Cells?
Biomed Res Int. 2019 Apr 14;2019:8680935. doi: 10.1155/2019/8680935. eCollection 2019.
8
Disruption of the SucT acyltransferase in abrogates succinylation of cell envelope polysaccharides.
J Biol Chem. 2019 Jun 28;294(26):10325-10335. doi: 10.1074/jbc.RA119.008585. Epub 2019 May 20.
9
10
Covalent modifications of polysaccharides in mycobacteria.
Nat Chem Biol. 2018 Feb 14;14(3):193-198. doi: 10.1038/nchembio.2571.

本文引用的文献

2
Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis.
Adv Appl Microbiol. 2009;69:23-78. doi: 10.1016/S0065-2164(09)69002-X.
3
Identification of a polyprenylphosphomannosyl synthase involved in the synthesis of mycobacterial mannosides.
J Bacteriol. 2009 Nov;191(21):6769-72. doi: 10.1128/JB.00431-09. Epub 2009 Aug 28.
6
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
7
Glycosyltransferases: structures, functions, and mechanisms.
Annu Rev Biochem. 2008;77:521-55. doi: 10.1146/annurev.biochem.76.061005.092322.
9
A Francisella mutant in lipid A carbohydrate modification elicits protective immunity.
PLoS Pathog. 2008 Feb 8;4(2):e24. doi: 10.1371/journal.ppat.0040024.
10
Lipid A modification systems in gram-negative bacteria.
Annu Rev Biochem. 2007;76:295-329. doi: 10.1146/annurev.biochem.76.010307.145803.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验