Suppr超能文献

多壁碳纳米管(MWCNT)负载 Pt 燃料电池电催化剂的活性、稳定性和降解。

Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts.

机构信息

The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623 Berlin, Germany.

出版信息

Phys Chem Chem Phys. 2010 Dec 14;12(46):15251-8. doi: 10.1039/c0cp00609b. Epub 2010 Oct 29.

Abstract

Understanding and improving durability of fuel cell catalysts are currently one of the major goals in fuel cell research. Here, we present a comparative stability study of multi walled carbon nanotube (MWCNT) and conventional carbon supported platinum nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). The aim of this study was to obtain insight into the mechanisms controlling degradation, in particular the role of nanoparticle coarsening and support corrosion effects. A MWCNT-supported 20 wt.% Pt catalyst and a Vulcan XC 72R-supported 20 wt.% Pt catalyst with a BET surface area of around 150 m(2) g(-1) and with a comparable Pt mean particle size were subjected to electrode potential cycling in a "lifetime" stability regime (voltage cycles between 0.5 to 1.0 V vs. RHE) and a "start-up" stability regime (cycles between 0.5 to 1.5 V vs. RHE). Before, during and after potential cycling, the ORR activity and structural/morphological (XRD, TEM) characteristics were recorded and analyzed. Our results did not indicate any activity benefit of MWCNT support for the kinetic rate of ORR. In the "lifetime" regime, the MWCNT supported Pt catalyst showed clearly smaller electrochemically active surface area (ECSA) and mass activity losses compared to the Vulcan XC 72R supported Pt catalyst. In the "start-up" regime, Pt on MWCNT exhibited a reduced relative ECSA loss compared to Pt on Vulcan XC 72R. We directly imaged the trace of a migrating platinum particle inside a MWCNT suggesting enhanced adhesion between Pt atoms and the graphene tube walls. Our data suggests that the ECSA loss differences between the two catalysts are not controlled by particle growth. We rather conclude that over the time scale of our stability tests (10,000 potential cycles and beyond), the macroscopic ECSA loss is primarily controlled by carbon corrosion associated with Pt particle detachment and loss of electrical contact.

摘要

理解和提高燃料电池催化剂的耐久性是目前燃料电池研究的主要目标之一。在这里,我们对多壁碳纳米管(MWCNT)和传统碳负载铂纳米粒子电催化剂在氧还原反应(ORR)中的稳定性进行了比较研究。这项研究的目的是深入了解控制降解的机制,特别是纳米颗粒粗化和载体腐蚀效应的作用。我们对负载在 MWCNT 上的 20wt.%Pt 催化剂和负载在 Vulcan XC 72R 上的 20wt.%Pt 催化剂进行了电极电势循环稳定性测试,这两种催化剂的 BET 表面积约为 150m(2)g(-1),Pt 平均粒径相当。在“寿命”稳定性(0.5 至 1.0V vs. RHE 之间的电压循环)和“启动”稳定性(0.5 至 1.5V vs. RHE 之间的循环)两种条件下进行了测试。在电势循环之前、期间和之后,我们记录和分析了 ORR 活性和结构/形态(XRD、TEM)特性。我们的结果并没有表明 MWCNT 载体对 ORR 动力学速率有任何活性优势。在“寿命”稳定性条件下,与负载在 Vulcan XC 72R 上的 Pt 催化剂相比,负载在 MWCNT 上的 Pt 催化剂的电化学活性表面积(ECSA)和质量活性损失明显更小。在“启动”稳定性条件下,负载在 MWCNT 上的 Pt 表现出比负载在 Vulcan XC 72R 上的 Pt 相对 ECSA 损失更小。我们直接观察到了一个在 MWCNT 内部迁移的铂颗粒的痕迹,这表明 Pt 原子和石墨烯管壁之间的附着力增强。我们的数据表明,两种催化剂之间的 ECSA 损失差异不受颗粒生长控制。我们的结论是,在我们的稳定性测试时间范围内(10000 次电势循环及以上),宏观 ECSA 损失主要由与 Pt 颗粒脱落和电接触损失相关的碳腐蚀控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验