Suppr超能文献

更多膜,更多蛋白:复杂的蛋白导入二级质体的机制。

More membranes, more proteins: complex protein import mechanisms into secondary plastids.

机构信息

Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.

出版信息

Protist. 2010 Dec;161(5):672-87. doi: 10.1016/j.protis.2010.09.002. Epub 2010 Oct 30.

Abstract

Plastids are found across the tree of life in a tremendous diversity of life forms. Surprisingly they are not limited to photosynthetic organisms but also found in numerous predators and parasites. An important reason for the pervasiveness of plastids has been their ability to move laterally and to jump from one branch of the tree of life to the next through secondary endosymbiosis. Eukaryotic algae have entered endosymbiotic relationships with other eukaryotes on multiple independent occasions. The descendants of these endosymbiotic events now carry complex plastids, organelles that are bound by three or even four membranes. As in all endosymbiotic organelles most of the symbiont's genes have been transferred to the host and their protein products have to be imported into the organelle. As four membranes might suggest, this is a complex process. The emerging mechanisms display a series of translocons that mirror the divergent ancestry of the membranes they cross. This review is written from the viewpoint of a parasite biologist and seeks to provide a brief overview of plastid evolution in particular for readers not already familiar with plant and algal biology and then focuses on recent molecular discoveries using genetically tractable Apicomplexa and diatoms.

摘要

质体存在于生命之树的各个分支中,具有巨大的多样性。令人惊讶的是,它们不仅限于光合生物,也存在于众多捕食者和寄生虫中。质体普遍存在的一个重要原因是它们能够横向移动,并通过二次内共生从生命之树的一个分支跳跃到另一个分支。真核藻类已经多次与其他真核生物发生内共生关系。这些内共生事件的后代现在携带复杂的质体,这些细胞器由三层甚至四层膜组成。与所有内共生细胞器一样,共生体的大部分基因已经转移到宿主中,其蛋白质产物必须被导入细胞器。正如四层膜所表明的那样,这是一个复杂的过程。新兴的机制显示出一系列移位子,反映了它们穿越的膜的不同起源。这篇综述从寄生虫生物学家的角度撰写,旨在为那些对植物和藻类生物学不熟悉的读者提供质体进化的简要概述,然后重点介绍使用遗传上可操作的顶复门生物和硅藻的最新分子发现。

相似文献

1
More membranes, more proteins: complex protein import mechanisms into secondary plastids.
Protist. 2010 Dec;161(5):672-87. doi: 10.1016/j.protis.2010.09.002. Epub 2010 Oct 30.
2
On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability - review.
Folia Microbiol (Praha). 2009;54(4):303-21. doi: 10.1007/s12223-009-0048-z. Epub 2009 Oct 14.
3
Plastids and protein targeting.
J Eukaryot Microbiol. 1999 Jul-Aug;46(4):339-46. doi: 10.1111/j.1550-7408.1999.tb04613.x.
4
Protein sorting in complex plastids.
Biochim Biophys Acta. 2013 Feb;1833(2):352-9. doi: 10.1016/j.bbamcr.2012.05.030. Epub 2012 Jun 7.
5
Protein import into complex plastids: Cellular organization of higher complexity.
Eur J Cell Biol. 2015 Jul-Sep;94(7-9):340-8. doi: 10.1016/j.ejcb.2015.05.008. Epub 2015 Jun 1.
6
Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):109-33; discussion 133-4. doi: 10.1098/rstb.2002.1194.
7
Genomic Insights into Plastid Evolution.
Genome Biol Evol. 2020 Jul 1;12(7):978-990. doi: 10.1093/gbe/evaa096.
8
Protein transport into secondary plastids and the evolution of primary and secondary plastids.
Int Rev Cytol. 2002;221:191-255. doi: 10.1016/s0074-7696(02)21013-x.
9
A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus.
Mol Biol Evol. 2008 Jun;25(6):1167-79. doi: 10.1093/molbev/msn064. Epub 2008 Mar 20.
10
Translocation of proteins across the multiple membranes of complex plastids.
Biochim Biophys Acta. 2001 Dec 12;1541(1-2):34-53. doi: 10.1016/s0167-4889(01)00154-9.

引用本文的文献

1
Iron transport pathways in the human malaria parasite revealed by RNA-sequencing.
Front Cell Infect Microbiol. 2024 Nov 7;14:1480076. doi: 10.3389/fcimb.2024.1480076. eCollection 2024.
2
Updated List of Transport Proteins in .
Front Cell Infect Microbiol. 2022 Jun 24;12:926541. doi: 10.3389/fcimb.2022.926541. eCollection 2022.
3
Tracking N-terminal protein processing from the Golgi to the chromatophore of a rhizarian amoeba.
Plant Physiol. 2022 Jun 27;189(3):1226-1231. doi: 10.1093/plphys/kiac173.
4
Verification of the Translocon and its Localization in the Chloroplast Membrane in Diatoms.
Int J Mol Sci. 2019 Aug 16;20(16):4000. doi: 10.3390/ijms20164000.
5
Genome assembly of provides evidence of host nucleus overthrow by the symbiont nucleus during speciation.
Commun Biol. 2019 Jul 3;2:249. doi: 10.1038/s42003-019-0500-9. eCollection 2019.
6
Heterologous expression in reveals a topogenic signal anchor in a apicoplast protein.
FEBS Open Bio. 2018 Oct 22;8(11):1746-1762. doi: 10.1002/2211-5463.12527. eCollection 2018 Nov.
7
Comparative Analysis of Apicoplast-Targeted Protein Extension Lengths in Apicomplexan Parasites.
Biomed Res Int. 2015;2015:452958. doi: 10.1155/2015/452958. Epub 2015 May 31.
8
Protein targeting and transport as a necessary consequence of increased cellular complexity.
Cold Spring Harb Perspect Biol. 2014 Aug 1;6(8):a016055. doi: 10.1101/cshperspect.a016055.
9
Glycoprotein import: a common feature of complex plastids?
Plant Signal Behav. 2013 Oct;8(10). doi: 10.4161/psb.26050.

本文引用的文献

2
A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10949-54. doi: 10.1073/pnas.1003335107. Epub 2010 Jun 1.
3
Metabolic pathways in the apicoplast of apicomplexa.
Int Rev Cell Mol Biol. 2010;281:161-228. doi: 10.1016/S1937-6448(10)81005-6.
4
New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms.
Mol Microbiol. 2010 May;76(3):793-801. doi: 10.1111/j.1365-2958.2010.07142.x. Epub 2010 Mar 25.
5
Protein transport into chloroplasts.
Annu Rev Plant Biol. 2010;61:157-80. doi: 10.1146/annurev-arplant-042809-112222.
6
Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2491-6. doi: 10.1073/pnas.0909080107. Epub 2010 Jan 21.
7
Characterization of periplastidal compartment-targeting signals in chlorarachniophytes.
Mol Biol Evol. 2010 Jul;27(7):1538-45. doi: 10.1093/molbev/msq038. Epub 2010 Feb 4.
8
Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates.
J Biol Chem. 2010 Feb 26;285(9):6848-56. doi: 10.1074/jbc.M109.074807. Epub 2009 Dec 30.
10
Membrane contact sites between apicoplast and ER in Toxoplasma gondii revealed by electron tomography.
Traffic. 2009 Oct;10(10):1471-80. doi: 10.1111/j.1600-0854.2009.00954.x. Epub 2009 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验