Suppr超能文献

基于波前传感的去卷积与传统线性和散斑图像重建的信噪比比较。

Signal-to-noise comparison of deconvolution from wave-front sensing with traditional linear and speckle image reconstruction.

作者信息

Welsh B M, Roggemann M C

出版信息

Appl Opt. 1995 Apr 20;34(12):2111-9. doi: 10.1364/AO.34.002111.

Abstract

It is well known that atmospheric turbulence severely degrades the performance of ground-based imaging systems. Techniques to overcome the effects of the atmosphere have been developing at a rapid pace over the past 10 years. These techniques can be grouped into two broad categories: predetection and postdetection techniques. A recent newcomer to the postdetection scene is deconvolution from wave-front sensing (DWFS). DWFS is a postdetection image-reconstruction technique that makes use of one feature of predetection techniques. A wave-front sensor (WFS) is used to record the wave-front phase distortion in the pupil of the telescope for each short-exposure image. The additional information provided by the WFS is used to estimate the system's point-spread function (PSF). The PSF is then used in conjunction with the ensemble of short-exposure images to obtain an estimate of the object intensity distribution through deconvolution. With the addition of DWFS to the suite of possible postdetection image-reconstruction techniques, it is natural to ask "How does DWFS compare with both traditional linear and speckle image-reconstruction techniques?" In the results we make a direct comparison based on a frequency-domain signal-to-noise-ratio performance metric. This metric is applied to each technique's image-reconstruction estimator. We find that DWFS nearly always results in improved performance over the estimators of traditional linear image reconstruction such as Wiener filtering. On the other hand, DWFS does not always outperform speckle-imaging techniques, and in cases that it does the improvement is small.

摘要

众所周知,大气湍流会严重降低地基成像系统的性能。在过去十年中,克服大气影响的技术一直在快速发展。这些技术可大致分为两大类:检测前技术和检测后技术。检测后领域的一项新成员是波前传感反卷积(DWFS)。DWFS是一种检测后图像重建技术,它利用了检测前技术的一个特点。波前传感器(WFS)用于记录望远镜光瞳中每个短曝光图像的波前相位畸变。WFS提供的额外信息用于估计系统的点扩散函数(PSF)。然后,PSF与短曝光图像集一起用于通过反卷积获得目标强度分布的估计值。随着DWFS被添加到可能的检测后图像重建技术中,自然会问“DWFS与传统线性和散斑图像重建技术相比如何?”在结果中,我们基于频域信噪比性能指标进行了直接比较。该指标应用于每种技术的图像重建估计器。我们发现,与传统线性图像重建的估计器(如维纳滤波)相比,DWFS几乎总是能提高性能。另一方面,DWFS并不总是优于散斑成像技术,而且在它确实优于散斑成像技术的情况下,改进也很小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验