Suppr超能文献

肿瘤内巨噬细胞诱导细胞毒性一氧化氮产生对于肿瘤消除至关重要。

CTL induction of tumoricidal nitric oxide production by intratumoral macrophages is critical for tumor elimination.

机构信息

Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

出版信息

J Immunol. 2010 Dec 1;185(11):6706-18. doi: 10.4049/jimmunol.0903411. Epub 2010 Nov 1.

Abstract

To characterize mechanisms of CTL inhibition within an ocular tumor microenvironment, tumor-specific CTLs were transferred into mice with tumors developing within the anterior chamber of the eye or skin. Ocular tumors were resistant to CTL transfer therapy whereas skin tumors were sensitive. CTLs infiltrated ocular tumors at higher CTL/tumor ratios than in skin tumors and demonstrated comparable ex vivo effector function to CTLs within skin tumors indicating that ocular tumor progression was not due to decreased CTL accumulation or inhibited CTL function within the eye. CD11b(+)Gr-1(+)F4/80(-) cells predominated within ocular tumors, whereas skin tumors were primarily infiltrated by CD11b(+)Gr-1(-)F4/80(+) macrophages (Ms), suggesting that myeloid derived suppressor cells may contribute to ocular tumor growth. However, CD11b(+) myeloid cells isolated from either tumor site suppressed CTL activity in vitro via NO production. Paradoxically, the regression of skin tumors by CTL transfer therapy required NO production by intratumoral Ms indicating that NO-producing intratumoral myeloid cells did not suppress the effector phase of CTL. Upon CTL transfer, tumoricidal concentrations of NO were only produced by skin tumor-associated Ms though ocular tumor-associated Ms demonstrated comparable expression of inducible NO synthase protein suggesting that NO synthase enzymatic activity was compromised within the eye. Correspondingly, in vitro-activated Ms limited tumor growth when co-injected with tumor cells in the skin but not in the eye. In conclusion, the decreased capacity of Ms to produce NO within the ocular microenvironment limits CTL tumoricidal activity allowing ocular tumors to progress.

摘要

为了阐明眼内肿瘤微环境中 CTL 抑制的机制,将肿瘤特异性 CTL 转移到眼内前房或皮肤内形成肿瘤的小鼠体内。结果显示,眼内肿瘤对 CTL 转移治疗具有抗性,而皮肤肿瘤则具有敏感性。CTL 向眼内肿瘤的浸润比例高于皮肤肿瘤,并且与皮肤肿瘤中的 CTL 相比具有相当的体外效应功能,这表明眼内肿瘤的进展并非由于 CTL 在眼内的积累减少或功能受到抑制。在眼内肿瘤中,CD11b(+)Gr-1(+)F4/80(-)细胞占主导地位,而皮肤肿瘤主要浸润 CD11b(+)Gr-1(-)F4/80(+)巨噬细胞(Ms),这表明髓源性抑制细胞可能有助于眼内肿瘤的生长。然而,从任一肿瘤部位分离出的 CD11b(+)髓样细胞在体外通过产生 NO 抑制 CTL 的活性。矛盾的是,CTL 转移治疗导致皮肤肿瘤消退需要肿瘤内 Ms 产生 NO,这表明产生 NO 的肿瘤内髓样细胞不会抑制 CTL 的效应阶段。在 CTL 转移后,只有皮肤肿瘤相关的 Ms 产生杀伤肿瘤的 NO 浓度,尽管眼内肿瘤相关的 Ms 表现出相当的诱导型一氧化氮合酶蛋白表达,但这表明眼内的一氧化氮合酶酶活性受到损害。相应地,在体外激活的 Ms 与肿瘤细胞共同注射到皮肤中可限制肿瘤生长,但在眼内则不行。总之,眼内微环境中 Ms 产生 NO 的能力降低限制了 CTL 的杀伤肿瘤活性,从而导致眼内肿瘤的进展。

相似文献

1
CTL induction of tumoricidal nitric oxide production by intratumoral macrophages is critical for tumor elimination.
J Immunol. 2010 Dec 1;185(11):6706-18. doi: 10.4049/jimmunol.0903411. Epub 2010 Nov 1.
6
Influence of immune privilege on ocular tumor development.
Ocul Immunol Inflamm. 2010 Apr;18(2):80-90. doi: 10.3109/09273941003669950.

引用本文的文献

2
Application of single-cell sequencing to the research of tumor microenvironment.
Front Immunol. 2023 Oct 27;14:1285540. doi: 10.3389/fimmu.2023.1285540. eCollection 2023.
5
Influence of Innate Immunity on Cancer Cell Stemness.
Int J Mol Sci. 2020 May 9;21(9):3352. doi: 10.3390/ijms21093352.
6
The Remarkable Plasticity of Macrophages: A Chance to Fight Cancer.
Front Immunol. 2019 Jul 12;10:1563. doi: 10.3389/fimmu.2019.01563. eCollection 2019.
7
Senescent cell clearance by the immune system: Emerging therapeutic opportunities.
Semin Immunol. 2018 Dec;40:101275. doi: 10.1016/j.smim.2019.04.003. Epub 2019 May 11.
8
The Multifarious Role of Microglia in Brain Metastasis.
Front Cell Neurosci. 2018 Nov 12;12:414. doi: 10.3389/fncel.2018.00414. eCollection 2018.
9
Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression.
Front Immunol. 2018 Aug 31;9:1977. doi: 10.3389/fimmu.2018.01977. eCollection 2018.
10
Tumor Killing by CD4 T Cells Is Mediated Induction of Inducible Nitric Oxide Synthase-Dependent Macrophage Cytotoxicity.
Front Immunol. 2018 Jul 23;9:1684. doi: 10.3389/fimmu.2018.01684. eCollection 2018.

本文引用的文献

2
Immune escape mechanisms of intraocular tumors.
Prog Retin Eye Res. 2009 Sep;28(5):329-47. doi: 10.1016/j.preteyeres.2009.06.002. Epub 2009 Jun 27.
3
Activated CD11b+ CD15+ granulocytes increase in the blood of patients with uveal melanoma.
Invest Ophthalmol Vis Sci. 2009 Sep;50(9):4295-303. doi: 10.1167/iovs.08-3012. Epub 2009 Apr 15.
4
Myeloid-derived suppressor cells as regulators of the immune system.
Nat Rev Immunol. 2009 Mar;9(3):162-74. doi: 10.1038/nri2506.
5
Subsets of myeloid-derived suppressor cells in tumor-bearing mice.
J Immunol. 2008 Oct 15;181(8):5791-802. doi: 10.4049/jimmunol.181.8.5791.
7
Molecular signature of CD8+ T cell exhaustion during chronic viral infection.
Immunity. 2007 Oct;27(4):670-84. doi: 10.1016/j.immuni.2007.09.006. Epub 2007 Oct 18.
8
CD4+ T-cell-dependent tumour rejection in an immune-privileged environment requires macrophages.
Immunology. 2008 Mar;123(3):367-77. doi: 10.1111/j.1365-2567.2007.02700.x. Epub 2007 Oct 17.
10
Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major.
Nat Med. 2007 Jul;13(7):843-50. doi: 10.1038/nm1592. Epub 2007 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验