Suppr超能文献

非小细胞肺癌的基因组医学:为个性化医疗铺平道路。

Genomic medicine in non-small cell lung cancer: paving the path to personalized care.

机构信息

The Prince Charles Hospital, The University of Queensland, Brisbane, Queensland, Australia.

出版信息

Respirology. 2011 Feb;16(2):257-63. doi: 10.1111/j.1440-1843.2010.01892.x.

Abstract

Lung cancer is the commonest cause of cancer-related mortality and non-small cell lung cancer (NSCLC) accounts for 80% of all lung cancer. The prognosis of NSCLC remains poor across all stages, despite advances in staging techniques and treatments. The findings of recent high-throughput mRNA microarray studies have shown potential in refining current NSCLC diagnosis, classification, prognosis and treatment paradigms. Emerging microarray studies of microRNA, DNA copy number and methylation profiles are also providing novel insights into the biology of NSCLC. Currently there are several challenges, such as the reproducibility and cost of microarray platforms that will need to be addressed prior to the implementation of these genomic technologies to routine thoracic oncology practice. In addition, genomic tests (such as prognosis and prediction gene expression signatures) will need to be validated in well designed prospective studies that aim to answer clinically relevant questions. If successful, the integration of microarray-based genomic information with existing clinicopathological models may enhance the ability of clinicians to match the most effective treatment to an individual patient. Such a strategy may improve survival and reduce treatment-related morbidity in NSCLC patients.

摘要

肺癌是癌症相关死亡的最常见原因,而非小细胞肺癌(NSCLC)占所有肺癌的 80%。尽管分期技术和治疗方法有所进步,但 NSCLC 在所有阶段的预后仍然很差。最近高通量 mRNA 微阵列研究的结果表明,在当前 NSCLC 的诊断、分类、预后和治疗模式方面具有潜在的应用价值。新兴的 microRNA、DNA 拷贝数和甲基化谱的微阵列研究也为 NSCLC 的生物学提供了新的见解。目前,存在一些挑战,例如微阵列平台的可重复性和成本,这些问题需要在将这些基因组技术应用于常规胸部肿瘤学实践之前得到解决。此外,基因组测试(如预后和预测基因表达特征)需要在旨在回答临床相关问题的精心设计的前瞻性研究中进行验证。如果成功,基于微阵列的基因组信息与现有的临床病理模型的整合可能会增强临床医生将最有效的治疗方法与个体患者相匹配的能力。这种策略可能会改善 NSCLC 患者的生存并降低与治疗相关的发病率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验