Departments of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States.
Biomacromolecules. 2010 Dec 13;11(12):3644-51. doi: 10.1021/bm1010992. Epub 2010 Nov 3.
The development of protein-based materials with diverse mechanical properties will facilitate the realization of a broad range of potential applications. The recombinant Drosophila melanogaster transcription factor Ultrabithorax self-assembles under mild conditions in aqueous buffers into extremely extensible materials. By controlling fiber diameter, both the mechanism of extension and the magnitude of the mechanical properties can be varied. Narrow Ultrabithorax fibers (diameter <10 μm) extend elastically, whereas the predominantly plastic deformation of wide fibers (diameter >15 μm) reflects the increase in breaking strain with increasing diameter, apparently due to a change in structure. The breaking stress/strain of the widest fibers resembles that of natural elastin. Intermediate fibers display mixed properties. Fiber bundles retain the mechanical properties of individual fibers but can withstand much larger forces. Controlling fiber size and generating fiber superstructures is a facile way to manipulate the mechanical characteristics of protein fibers and rationally engineer macroscale protein-based materials with desirable properties.
具有不同机械性能的蛋白质材料的发展将促进广泛潜在应用的实现。重组黑腹果蝇转录因子 Ultrabithorax 在温和的条件下在水性缓冲液中自组装成非常可拉伸的材料。通过控制纤维直径,可以改变延伸的机制和机械性能的大小。窄 Ultrabithorax 纤维(直径 <10 μm)弹性延伸,而宽纤维(直径 >15 μm)的主要塑性变形反映了断裂应变随直径增加而增加,显然是由于结构变化。最宽纤维的断裂应力/应变类似于天然弹性蛋白。中间纤维表现出混合性质。纤维束保留了单个纤维的机械性能,但可以承受更大的力。控制纤维尺寸和生成纤维超结构是一种简单的方法,可以操纵蛋白质纤维的机械特性,并合理地工程化具有理想性能的宏观蛋白质基材料。