Duschl A, Lanyi J K, Zimányi L
Department of Physiology and Biophysics, University of California, Irvine 92717.
J Biol Chem. 1990 Jan 25;265(3):1261-7.
Pharaonis halorhodopsin is a light-driven transport system for chloride, similarly to the previously described halorhodopsin, but we find that it transports nitrate as effectively as chloride. We studied the photoreactions of the purified, detergent-solubilized pharaonis pigment with a gated multichannel analyzer. At a physiological salt concentration (4 M NaCl), the absorption spectra and rate constants of rise and decay for intermediates of the photocycle were similar to those for halorhodopsin. In buffer containing nitrate, halorhodopsin exhibits a second, truncated photocycle; this difference in the photoreaction of the pigment occurs when an anion is bound in such a way as to preclude transport. As expected from the lack of anion specificity in the transport, the photocycle of pharaonis halorhodopsin was nearly unaffected by replacement of chloride with nitrate. All presumed buried positively charged residues, which might play a role in anion binding, are conserved in the two pigments. At the extracellular end of the presumed helix C, however, an arginine residue is found in halorhodopsin, but not in pharaonis halorhodopsin, and an arginine-rich segment between the presumed helices A and B in halorhodopsin is replaced by a less positively charged sequence in pharaonis halorhodopsin (Lanyi, J. K., Duschl, A., Hatfield, G. W., May, K., and Oesterhelt, D. (1990) J. Biol. Chem. 265, 1253-1260). One or both of these alterations may explain the difference in the anion selectivity of the two proteins.
法老盐视紫红质是一种光驱动的氯离子转运系统,与之前描述的盐视紫红质类似,但我们发现它转运硝酸盐的效率与转运氯离子的效率相同。我们使用门控多通道分析仪研究了纯化的、去污剂增溶的法老色素的光反应。在生理盐浓度(4M NaCl)下,光循环中间体的吸收光谱以及上升和衰减的速率常数与盐视紫红质的相似。在含有硝酸盐的缓冲液中,盐视紫红质表现出第二个截短的光循环;当阴离子以阻止转运的方式结合时,色素的光反应会出现这种差异。正如从转运过程中缺乏阴离子特异性所预期的那样,用硝酸盐替代氯离子几乎不会影响法老盐视紫红质的光循环。所有可能在阴离子结合中起作用的假定埋藏的带正电荷残基在这两种色素中都是保守的。然而,在假定的螺旋C的细胞外末端,盐视紫红质中存在一个精氨酸残基,而法老盐视紫红质中没有,并且盐视紫红质中假定的螺旋A和B之间富含精氨酸的片段在法老盐视紫红质中被一个带正电荷较少的序列所取代(兰伊,J.K.,杜施尔,A.,哈特菲尔德,G.W.,梅,K.,和奥斯特黑尔特,D.(1990年)《生物化学杂志》265,1253 - 1260)。这些改变中的一个或两个可能解释了这两种蛋白质在阴离子选择性上的差异。