Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
J Chem Phys. 2010 Nov 7;133(17):174124. doi: 10.1063/1.3489409.
Initial state-selected reaction probabilities for the H+CH(4)→H(2)+CH(3) reaction are computed for vanishing total angular momentum by full-dimensional calculations employing the multiconfigurational time-dependent Hartree approach. An ensemble of wave packets completely describing reactivity for total energies up to 0.58 eV is constructed in the transition state region by diagonalization of the thermal flux operator. These wave packets are then propagated into the reactant asymptotic region to obtain the initial state-selected reaction probabilities. Reaction probabilities for reactants in all rotational states of the vibrational 1A(1), 1F(2), and 1E levels of methane are presented. Vibrational excitation is found to decrease reactivity when reaction probabilities at equivalent total energies are compared but to increase reaction probabilities when the comparison is done at the basis of equivalent collision energies. Only a fraction of the initial vibrational energy can be utilized to promote the reaction. The effect of rotational excitation on the reactivity differs depending on the initial vibrational state of methane. For the 1A(1) and 1F(2) vibrational states of methane, rotational excitation decreases the reaction probability even when comparing reaction probabilities at equivalent collision energies. In contrast, rotational energy is even more efficient than translational energy in increasing the reaction probability when the reaction starts from the 1E vibrational state of methane. All findings can be explained employing a transition state based interpretation of the reaction process.
通过使用多组态含时哈特ree 方法的全维计算,针对总角动量为零的情况,计算了 H+CH(4)→H(2)+CH(3)反应的初始态选择反应概率。在过渡态区域,通过对角化热流算符构建了一套完全描述总能量高达 0.58 eV 的反应性的波包。然后,这些波包被传播到反应物渐近区,以获得初始态选择的反应概率。呈现了甲烷的振动 1A(1)、1F(2)和 1E 能级中所有转动态反应物的反应概率。当比较等效总能量下的反应概率时,振动激发会降低反应性,但当以等效碰撞能量为基础进行比较时,反应概率会增加。只有初始振动能量的一部分可以用于促进反应。旋转激发对反应性的影响因甲烷的初始振动状态而异。对于甲烷的 1A(1)和 1F(2)振动状态,即使在比较等效碰撞能量下的反应概率时,旋转激发也会降低反应概率。相比之下,当反应从甲烷的 1E 振动状态开始时,旋转能量比平移能量更有效地增加反应概率。所有的发现都可以用反应过程的基于过渡态的解释来解释。