Laboratory of Hemodynamics and Cardiovascular Technology, Ecole Polytehnique Federale de Lausanne, Lausanne, Switzerland.
Biomech Model Mechanobiol. 2011 Jul;10(4):599-611. doi: 10.1007/s10237-010-0259-x. Epub 2010 Oct 7.
The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation-extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation-extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation-extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.
血管壁表现出非线性各向异性的力学特性。识别应变能函数(SEF)是描述其复杂非线性弹性特性的首选方法。早期基于组成的 SEF 模型中,将弹性蛋白建模为各向同性材料,无法准确描述组织对膨胀-拉伸加载的响应。我们假设这些缺点部分归因于弹性蛋白未被考虑的各向异性特性。我们在兔颈总动脉进行了膨胀-拉伸测试,分别在弹性蛋白酶降解前后进行,并将基于组成的 SEF 应用于实验数据,其中包括各向同性和各向异性的弹性蛋白部分。我们使用透射电子显微镜(TEM)和连续块面扫描电子显微镜(SBFSEM)为假设的各向异性提供直接的结构证据。在完整的动脉中,包含具有一组纤维的圆周方向的各向异性弹性蛋白的 SEF 比各向同性 SEF 更能拟合膨胀-拉伸数据。这得到了 TEM 和 SBFSEM 成像的支持,这些成像显示了圆周方向的层间弹性蛋白纤维。在弹性蛋白降解的动脉中,两种 SEF 同样成功地预测了各向异性壁行为。在弹性蛋白酶处理的动脉中,使用各向异性弹性蛋白的 SEF 拟合后,胶原的参与比完整动脉中晚。我们得出结论,与简单的各向同性弹性蛋白模型相比,具有各向异性弹性蛋白部分的基于组成的模型更准确地描述了动脉壁的力学特性。基于电子显微镜技术的微观结构成像为弹性蛋白各向异性提供了证据。最后,该模型表明在弹性蛋白酶处理后胶原的参与更晚且更不突然。