Poulin R, Pegg A E
Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033.
J Biol Chem. 1990 Mar 5;265(7):4025-32.
Ornithine decarboxylase (ODC) activity is known to be strongly enhanced in mammalian cells by a sudden reduction in ambient osmolality. The effect of hypoosmotic shock on the regulation of ODC protein and mRNA levels was studied in a variant L1210 mouse leukemia cell line (D-R cells) which expresses ODC at greater than or equal to 100-fold higher levels than the parental cells. Hypoosmotic stress increased ODC activity in proportion with the osmotic gradient imposed to both D-R cells and their normal counterparts. A 60% decrease in medium osmolality increased ODC activity and the amount of immunoreactive ODC protein from 20- to 30-fold after 4 h without any detectable change in ODC mRNA contents in D-R cells. ODC induction was sustained up to 48 h after hypoosmotic shock, with maximal activity levels being observed at 24 h. Hypotonic shock dramatically increased (up to 36-fold) the rate of ODC synthesis as measured by 10-min pulses with 35S-labeled methionine, in agreement with kinetic constants predicted from the changes observed for the enzyme activity. Moreover, hypoosmotic stress extended the half-life of ODC activity from 35 +/- 10 to 212 +/- 67 min and blocked any degradation of the radiolabeled immunoreactive protein, which had a half-life of 28 +/- 6 min under isotonic conditions, for at least 120 min after addition of cycloheximide. The induction of ODC by hypoosmotic stress was quickly reversed by a sudden upshift of osmolality through a very rapid inhibition of ODC biosynthesis and an increase in the rate of enzyme degradation. Thus, hypoosmotic stress activates the expression of ODC exclusively through post-transcriptional mechanisms in D-R cells. The osmotically induced accumulation of ODC molecules is quite unique as shown by the fact that ODC is the major protein (approximately 25% of total) synthesized during the first 4 h following a 60% hypotonic shock, despite a 30-50% reduction of the rate of labeled precursor incorporation into soluble proteins.
已知在哺乳动物细胞中,环境渗透压的突然降低会强烈增强鸟氨酸脱羧酶(ODC)的活性。在一种变异的L1210小鼠白血病细胞系(D-R细胞)中研究了低渗休克对ODC蛋白和mRNA水平调节的影响,该细胞系中ODC的表达水平比亲代细胞高100倍或更高。低渗应激使D-R细胞及其正常对应细胞中的ODC活性与所施加的渗透压梯度成比例增加。培养基渗透压降低60%后,4小时内ODC活性和免疫反应性ODC蛋白量增加了20至30倍,而D-R细胞中ODC mRNA含量没有任何可检测到的变化。低渗休克后ODC的诱导可持续长达48小时,在24小时时观察到最大活性水平。通过用35S标记的甲硫氨酸进行10分钟脉冲测量,低渗休克显著增加(高达36倍)ODC的合成速率,这与从酶活性变化预测的动力学常数一致。此外,低渗应激将ODC活性的半衰期从35±10分钟延长至212±67分钟,并阻止了放射性标记的免疫反应性蛋白的任何降解,在等渗条件下该蛋白的半衰期为28±6分钟,在加入环己酰亚胺后至少120分钟内如此。通过非常快速地抑制ODC生物合成和增加酶降解速率,渗透压的突然升高迅速逆转了低渗应激对ODC的诱导。因此,在D-R细胞中,低渗应激仅通过转录后机制激活ODC的表达。ODC分子的渗透压诱导积累非常独特,这一事实表明,尽管标记前体掺入可溶性蛋白的速率降低了30 - 50%,但在60%低渗休克后的最初4小时内,ODC是合成的主要蛋白(约占总量的25%)。