Departments of Pharmacology, The Second Military Medical University, Shanghai, China.
Hypertension. 2010 Dec;56(6):1137-44. doi: 10.1161/HYPERTENSIONAHA.110.160622. Epub 2010 Nov 8.
Endothelial progenitor cells (EPCs) are both reduced and dysfunctional in hypertension that correlates inversely with its mortality, but the mechanisms are poorly understood. Endothelial nitric oxide synthase (eNOS) critically regulates EPC mobilization and function but is uncoupled in salt-sensitive hypertension because of the reduced cofactor tetrahydrobiopterin (BH4). We tested the hypothesis that GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme of BH4 de novo synthesis, protects EPCs and its function in deoxycorticosterone acetate (DOCA)-salt mice. EPCs were isolated from peripheral blood and bone marrow of wild-type (WT), WT DOCA-salt, endothelial-specific GTPCH transgenic (Tg-GCH), GTPCH transgenic DOCA-salt, and BH4-deficient hph-1 mice. In WT DOCA-salt and hph-1 mice, EPCs were significantly decreased with impaired angiogenesis and adhesion, which were restored in Tg-GCH DOCA-salt mice. Superoxide (O₂⁻) and nitric oxide (NO) levels in EPCs were elevated and reduced, respectively, in WT DOCA-salt and hph-1 mice; both were rescued in Tg-GCH DOCA-salt mice. eNOS(-/-)/GCH(+/-) hybrid mice demonstrated that GTPCH preserved the circulating EPC number, reduced intracellular O₂⁻ in EPCs, and ameliorated EPC dysfunction independent of eNOS in DOCA-salt hypertension. Secreted thrombospondin-1 (TSP-1; a potent angiogenesis inhibitor) from EPCs was elevated in WT DOCA-salt and hph-1 but not DOCA-salt Tg-GCH mice. In vitro treatment with BH4, polyethylene glycol-superoxide dismutase (PEG-SOD), or Nomega-nitro-L-arginine (L-NNA) significantly augmented NO and reduced TSP-1 and O₂⁻ levels from EPCs of WT DOCA-salt mice. These results demonstrated, for the first time, that the GTPCH/BH4 pathway critically regulates EPC number and function in DOCA-salt hypertensive mice, at least in part, via suppressing TSP-1 expression and oxidative stress.
内皮祖细胞 (EPCs) 在与高血压死亡率呈负相关的高血压中既减少又功能失调,但机制尚不清楚。内皮型一氧化氮合酶 (eNOS) 对 EPC 的动员和功能具有关键调节作用,但在盐敏感性高血压中由于辅助因子四氢生物蝶呤 (BH4) 的减少而失去偶联。我们测试了这样一个假设,即鸟苷三磷酸环化水解酶 I (GTPCH I),BH4 从头合成的限速酶,可保护 EPC 及其在脱氧皮质酮醋酸盐 (DOCA)-盐小鼠中的功能。从野生型 (WT)、WT DOCA-盐、内皮特异性 GTPCH 转基因 (Tg-GCH)、GTPCH 转基因 DOCA-盐和 BH4 缺陷 hph-1 小鼠的外周血和骨髓中分离出 EPC。在 WT DOCA-盐和 hph-1 小鼠中,EPC 数量显著减少,血管生成和黏附功能受损,而 Tg-GCH DOCA-盐小鼠中则得到恢复。WT DOCA-盐和 hph-1 小鼠的 EPC 中超氧化物 (O₂⁻) 和一氧化氮 (NO) 水平分别升高和降低,而 Tg-GCH DOCA-盐小鼠中均得到恢复。eNOS(-/-)/GCH(+/-) 杂合小鼠表明,GTPCH 可维持循环 EPC 数量,减少 EPC 内的 O₂⁻,并改善 DOCA-盐高血压中独立于 eNOS 的 EPC 功能障碍。WT DOCA-盐和 hph-1 小鼠的 EPC 中分泌的血小板反应蛋白-1 (TSP-1;一种有效的血管生成抑制剂) 升高,但 DOCA-盐 Tg-GCH 小鼠中则没有升高。体外用 BH4、聚乙二醇-超氧化物歧化酶 (PEG-SOD) 或 Nomega-硝基-L-精氨酸 (L-NNA) 处理可显著增加 WT DOCA-盐小鼠的 EPC 中 NO 的水平,并降低 TSP-1 和 O₂⁻的水平。这些结果首次表明,GTPCH/BH4 途径至少部分通过抑制 TSP-1 表达和氧化应激,在 DOCA-盐高血压小鼠中对 EPC 的数量和功能具有关键调节作用。