Chopra Arvind
National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894
Radionuclides such as F, C, I, Cu, etc., are often used to label molecular imaging probes (MIP) for positron emission tomography (PET) of patients to detect and diagnose a variety of diseases, including cancer (1). However, some limitations (to mention a few) for the production and application of these MIPs are a short half-life (e.g., 110 min and 12 min for F and C, respectively), production of low quality images (e.g., with I), high radiation doses (e.g., Ga and Br), and accumulation in the liver or kidneys due to metabolic degradation (e.g., Cu) (1). In addition, MIPs labeled with nuclides that have a short half-life cannot be used in cases where long circulation times are necessary to obtain an optimal target/background signal. The limitations of various nuclides evaluated for the production and application of different PET MIPs are discussed in detail by Nayak and Brechbiel (1). Some investigators are particularly interested in the use of Cu to produce PET imaging probes because Cu is suitable as a source of the signal, it is relatively easily obtained, and its nuclear properties make it an excellent therapeutic radionuclide ( = 12.7 h; : 17.4%; max = 656 keV; : 39%; max = 573 keV) (2). Linking Cu to MIPs requires the use of a bifunctional chelator (BFC) that connects the radionuclide to the targeted probe. Therefore, it is important to have an appropriate BFC to create a Cu-labeled radiopharmaceutical that remains stable under conditions and generates suitable results during PET imaging. Several types of chelating agents have been used for the Cu-labeling of imaging probes, but some of the limitations for using these radiochemicals in humans include poor yields due to complicated procedures for the synthesis, harsh conditions used to label the compound that can degrade a probe, instability, lack of sufficient biological data, and accumulation in non-targeted organs that results in the masking of small lesions during PET imaging (3). In an effort to create a BFC that could be synthesized and labeled easily with Cu, a sarcophagine-based chelator, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo [6.6.6] icosane-1-ylamino)methyl)benzoic acid (AmBaSar), was produced by Cai et al. (2). A characteristic feature of this BFC is that it can rapidly form a coordination complex with metal ions within a cage-like structure that does not dissociate under physiological conditions. o further simplify the synthesis of AmBaSar, the investigators devised a four-step procedure to label the chelator with Cu ([Cu]-AmBaSar) (3). [Cu]-AmBaSar was then evaluated for its stability, microPET imaging characteristics, and biodistribution in normal mice (3). In addition, the stability, imaging, and biodistribution properties of [Cu]-AmBaSar were compared with those of Cu-labeled 1,4,7,10-tetraazacyclododecane-,','','''-tetraacetic acid ([Cu]-DOTA). In an earlier study AmBaSar was linked to Arg-Gly-Asp (RGD), a cyclic peptide that specifically binds to the αβ integrin receptor, and labeled it with Cu to obtain [Cu]-AmBaSar-RGD (2). Subsequently the labeled RGD complex was shown to be suitable for the detection of tumors expressing αβ integrin receptors in mice. Studies performed with [Cu]-AmBaSar-RGD are described in a separate chapter of MICAD (www.micad.nih.gov) (4).
诸如氟(F)、碳(C)、碘(I)、铜(Cu)等放射性核素常被用于标记分子成像探针(MIP),用于对患者进行正电子发射断层扫描(PET),以检测和诊断包括癌症在内的多种疾病(1)。然而,这些MIP的生产和应用存在一些局限性(仅举几例),如半衰期短(例如,F和C的半衰期分别为110分钟和12分钟)、图像质量低(例如,使用I时)、辐射剂量高(例如,镓(Ga)和溴(Br))以及由于代谢降解而在肝脏或肾脏中蓄积(例如,Cu)(1)。此外,用半衰期短的核素标记的MIP在需要长循环时间以获得最佳靶标/背景信号的情况下无法使用。Nayak和Brechbiel详细讨论了评估用于不同PET MIP生产和应用的各种核素的局限性(1)。一些研究人员对使用Cu生产PET成像探针特别感兴趣,因为Cu适合作为信号源,相对容易获得,并且其核性质使其成为一种优秀的治疗性放射性核素(半衰期 = 12.7小时;发射正电子的分支比:17.4%;最大能量 = 656 keV;发射γ射线的分支比:39%;最大能量 = 573 keV)(2)。将Cu与MIP连接需要使用双功能螯合剂(BFC),该螯合剂将放射性核素连接到靶向探针上。因此,拥有合适的BFC以制备在生理条件下保持稳定并在PET成像期间产生合适结果的Cu标记放射性药物非常重要。几种类型的螯合剂已被用于成像探针的Cu标记,但在人体中使用这些放射化学物质的一些局限性包括合成过程复杂导致产率低、用于标记化合物的苛刻条件会使探针降解、不稳定、缺乏足够的生物学数据以及在非靶向器官中蓄积导致PET成像期间小病变被掩盖(3)。为了制备一种能够轻松用Cu合成和标记的BFC,Cai等人制备了一种基于肌氨酸的螯合剂,4 - ((8 - 氨基 - 3,6,10,13,16,19 - 六氮杂双环[6.6.6]二十烷 - 1 - 基氨基)甲基)苯甲酸(AmBaSar)(2)。这种BFC的一个特征是它可以在笼状结构内与金属离子快速形成配位络合物,该络合物在生理条件下不会解离。为了进一步简化AmBaSar的合成,研究人员设计了一种四步程序来用Cu标记螯合剂([Cu] - AmBaSar)(3)。然后对[Cu] - AmBaSar的稳定性、微型PET成像特性以及在正常小鼠中的生物分布进行了评估(3)。此外,将[Cu] - AmBaSar的稳定性、成像和生物分布特性与Cu标记的1,4,7,10 - 四氮杂环十二烷 - N,N',N'',N''' - 四乙酸([Cu] - DOTA)进行了比较。在早期的一项研究中,AmBaSar与精氨酸 - 甘氨酸 - 天冬氨酸(RGD)连接,RGD是一种与αβ整合素受体特异性结合的环肽,并用Cu对其进行标记以获得[Cu] - AmBaSar - RGD(2)。随后,标记的RGD复合物被证明适用于检测小鼠中表达αβ整合素受体的肿瘤。用[Cu] - AmBaSar - RGD进行的研究在MICAD(www.micad.nih.gov)的单独一章中进行了描述(4)。