Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada.
Metallomics. 2010 Oct;2(10):710-7. doi: 10.1039/c0mt00008f. Epub 2010 Sep 20.
Selenium (Se) is an essential element, but causes toxic effects in fish at a slightly elevated level beyond the threshold. However, the degree of Se toxicity differs depending on the chemical forms of Se (e.g., organic vs. inorganic) to which fish are exposed to. The mechanisms of Se metabolism and toxicity in fish, particularly at cellular level, are poorly understood. The present study was designed to examine the metabolic fate of different seleno-compounds, both inorganic and organic, in isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) in primary culture using XANES spectroscopy. In cells exposed to 100 μM of selenate and selenite for 6-24 h, elemental Se was found to be the primary metabolite. Whereas, selenocystine appeared to be the major metabolite in cells exposed to 100 μM seleno-L-methionine for 6-24 h. Interestingly, we recorded L-methionine-γ-lyase activity in S9 fraction of cell lysate-an enzyme that directly catalyzes selenomethionine into methylselenol. We also found concurrent reduction of glutathione (GSH) concentration following reaction of seleno-L-methionine with cellular S9 fraction. Moreover, we observed a rapid increase in cellular reactive oxygen species (ROS) generation with increasing seleno-L-methionine exposure dose (100-1000 μM). These findings indicated the rapid cellular metabolism of seleno-L-methionine into methylselenol at higher exposure dose (≥100 μM), and the occurrence of GSH mediated redox cycling of methylselenol--a process that is known to produce reactive oxygen species (ROS). Overall, our results suggest that inorganic and organic selenium are metabolized through different metabolic pathways in rainbow trout hepatocytes. The findings of our study have important implications for understanding the chemical species-specific differences in Se toxicity to fish.
硒(Se)是一种必需元素,但在略高于阈值的水平下,会对鱼类产生毒性作用。然而,硒的毒性程度因鱼类暴露的硒化学形式(例如有机硒与无机硒)而异。鱼类硒代谢和毒性的机制,特别是在细胞水平上,还知之甚少。本研究旨在使用 XANES 光谱法研究不同硒化合物(无机和有机)在原代培养的虹鳟(Oncorhynchus mykiss)分离肝细胞中的代谢命运。在暴露于 100 μM 硒酸盐和亚硒酸盐 6-24 小时的细胞中,发现元素硒是主要代谢物。然而,在暴露于 100 μM 硒代 L-蛋氨酸 6-24 小时的细胞中,硒代胱氨酸似乎是主要代谢物。有趣的是,我们在细胞裂解物的 S9 部分记录到 L-蛋氨酸-γ-裂合酶活性-一种直接将硒代蛋氨酸催化成甲基硒醇的酶。我们还发现,随着硒代 L-蛋氨酸与细胞 S9 部分的反应,谷胱甘肽(GSH)浓度同时降低。此外,我们观察到随着硒代 L-蛋氨酸暴露剂量(100-1000 μM)的增加,细胞内活性氧物种(ROS)的生成迅速增加。这些发现表明,在较高暴露剂量(≥100 μM)下,硒代 L-蛋氨酸迅速代谢为甲基硒醇,并且发生 GSH 介导的甲基硒醇的氧化还原循环-这一过程已知会产生活性氧物种(ROS)。总体而言,我们的结果表明,无机硒和有机硒在虹鳟肝细胞中通过不同的代谢途径进行代谢。我们研究的结果对于理解鱼类硒毒性的化学物种特异性差异具有重要意义。