Department of Psychology, The University of Oklahoma, Norman, OK 73019, USA.
Child Dev. 2010 Nov-Dec;81(6):1768-86. doi: 10.1111/j.1467-8624.2010.01509.x.
How does understanding the decimal system change with age and experience? Second, third, sixth graders, and adults (Experiment 1: N = 96, mean ages = 7.9, 9.23, 12.06, and 19.96 years, respectively) made number line estimates across 3 scales (0-1,000, 0-10,000, and 0-100,000). Generation of linear estimates increased with age but decreased with numerical scale. Therefore, the authors hypothesized highlighting commonalities between small and large scales (15:100::1500:10000) might prompt children to generalize their linear representations to ever-larger scales. Experiment 2 assigned second graders (N = 46, mean age = 7.78 years) to experimental groups differing in how commonalities of small and large numerical scales were highlighted. Only children experiencing progressive alignment of small and large scales successfully produced linear estimates on increasingly larger scales, suggesting analogies between numeric scales elicit broad generalization of linear representations.
随着年龄和经验的增长,对十进制系统的理解会发生怎样的变化?在实验 1 中,二年级、三年级、六年级和成年人(N = 96,平均年龄分别为 7.9 岁、9.23 岁、12.06 岁和 19.96 岁)在 3 个尺度(0-1000、0-10000 和 0-100000)上进行了数线估计。线性估计的生成随着年龄的增长而增加,但随着数值尺度的增加而减少。因此,作者假设突出小尺度和大尺度之间的共同性(15:100::1500:10000)可能会促使儿童将他们的线性表示推广到更大的尺度。实验 2 将二年级学生(N = 46,平均年龄为 7.78 岁)分配到实验组中,这些实验组在突出小尺度和大尺度数值共同性的方式上有所不同。只有经历过小尺度和大尺度逐渐对齐的儿童才能成功地在越来越大的尺度上产生线性估计,这表明数字尺度之间的类比可以广泛推广线性表示。