Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON, Canada.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20893-8. doi: 10.1073/pnas.1006508107. Epub 2010 Nov 15.
The high-pressure behavior of silane, SiH(4), plus molecular hydrogen was investigated using a structural search method and ab initio molecular dynamics to predict the structures and examine the physical origin of the pressure-induced drop in hydrogen intramolecular vibrational (vibron) frequencies. A structural distortion is predicted at 15 GPa from a slightly strained fcc cell to a rhombohedral cell that involves a small volume change. The predicted equation of state and the pressure-induced drop in the hydrogen vibron frequencies reproduces well the experimental data (Strobel TA, Somayazulu M, Hemley RJ (2009) Phys Rev Lett 103:065701). The bond weakening in H(2) is induced by intermolecular interactions between the H(2) and SiH(4) molecules. A significant feature of the high-pressure structures of SiH(4)(H(2))(2) is the dynamical behavior of the H(2) molecules. It is found that H(2) molecules are rotating in this pressure range whereas the SiH(4) molecules remain rigid. The detailed nature of the interactions of molecular hydrogen with SiH(4) in SiH(4)(H(2))(2) is therefore strongly influenced by the dynamical behavior of the H(2) molecules in the high-pressure structure. The phase with the calculated structure is predicted to become metallic near 120 GPa, which is significantly lower than the currently suggested pressure for metallization of bulk molecular hydrogen.
使用结构搜索方法和从头算分子动力学研究了硅烷 SiH(4)与分子氢的高压行为,以预测结构并研究压力引起氢分子内振动(vibron)频率下降的物理原因。预测在 15 GPa 时,从略微应变的面心立方(fcc)胞转变为菱方胞,这涉及到较小的体积变化。预测的状态方程和压力引起的氢 vibron 频率下降很好地再现了实验数据(Strobel TA、Somayazulu M、Hemley RJ(2009)Phys Rev Lett 103:065701)。H(2)中的键变弱是由 H(2)和 SiH(4)分子之间的分子间相互作用引起的。SiH(4)(H(2))(2)的高压结构的一个显著特征是 H(2)分子的动力学行为。发现在这个压力范围内 H(2)分子在旋转,而 SiH(4)分子保持刚性。因此,分子氢与 SiH(4)在 SiH(4)(H(2))(2)中的相互作用的详细性质强烈受到高压结构中 H(2)分子动力学行为的影响。预测具有计算结构的相在约 120 GPa 附近变为金属相,这明显低于目前建议的 bulk 分子氢金属化压力。