Suppr超能文献

噬菌体 T4 Mre11-Rad50 复合物的生化特性分析。

Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex.

机构信息

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.

出版信息

J Biol Chem. 2011 Jan 28;286(4):2382-92. doi: 10.1074/jbc.M110.178871. Epub 2010 Nov 15.

Abstract

The Mre11-Rad50 complex (MR) from bacteriophage T4 (gp46/47) is involved in the processing of DNA double-strand breaks. Here, we describe the activities of the T4 MR complex and its modulation by proteins involved in homologous recombination. T4 Mre11 is a Rad50- and Mn(2+)-dependent dsDNA exonuclease and ssDNA endonuclease. ATP hydrolysis is required for the removal of multiple nucleotides via dsDNA exonuclease activity but not for the removal of the first nucleotide or for ssDNA endonuclease activity, indicating ATP hydrolysis is only required for repetitive nucleotide removal. By itself, Rad50 is a relatively inefficient ATPase, but the presence of Mre11 and dsDNA increases ATP hydrolysis by 20-fold. The ATP hydrolysis reaction exhibits positive cooperativity with Hill coefficients ranging from 1.4 for Rad50 alone to 2.4 for the Rad50-Mre11-DNA complex. Kinetic assays suggest that approximately four nucleotides are removed per ATP hydrolyzed. Directionality assays indicate that the prevailing activity is a 3' to 5' dsDNA exonuclease, which is incompatible with the proposed role of MR in the production of 3' ssDNA ends. Interestingly, we found that in the presence of a recombination mediator protein (UvsY) and ssDNA-binding protein (gp32), Mre11 is capable of using Mg(2+) as a cofactor for its nuclease activity. Additionally, the Mg(2+)-dependent nuclease activity, activated by UvsY and gp32, results in the formation of endonuclease reaction products. These results suggest that gp32 and UvsY may alter divalent cation preference and facilitate the formation of a 3' ssDNA overhang, which is a necessary intermediate for recombination-mediated double-strand break repair.

摘要

T4 噬菌体(gp46/47)的 Mre11-Rad50 复合物参与了 DNA 双链断裂的处理。在这里,我们描述了 T4 MR 复合物的活性及其被同源重组相关蛋白的调节。T4 Mre11 是一种 Rad50 和 Mn(2+)依赖的 dsDNA 外切核酸酶和 ssDNA 内切核酸酶。ATP 水解对于通过 dsDNA 外切核酸酶活性去除多个核苷酸是必需的,但对于去除第一个核苷酸或 ssDNA 内切核酸酶活性不是必需的,这表明 ATP 水解仅需要重复核苷酸的去除。单独的 Rad50 本身是一种相对低效的 ATP 酶,但 Mre11 和 dsDNA 的存在将 ATP 水解提高了 20 倍。ATP 水解反应与 Hill 系数呈正协同性,Rad50 单独的 Hill 系数为 1.4,Rad50-Mre11-DNA 复合物的 Hill 系数为 2.4。动力学测定表明,每个 ATP 水解大约去除四个核苷酸。方向性测定表明,主要活性是 3' 到 5' 的 dsDNA 外切核酸酶,这与 MR 在产生 3' ssDNA 末端中的作用不一致。有趣的是,我们发现,在存在重组介质蛋白(UvsY)和 ssDNA 结合蛋白(gp32)的情况下,Mre11 能够将 Mg(2+) 用作其核酸酶活性的辅助因子。此外,由 UvsY 和 gp32 激活的 Mg(2+)-依赖性核酸酶活性导致形成内切核酸酶反应产物。这些结果表明,gp32 和 UvsY 可能改变二价阳离子偏好并促进 3' ssDNA 突出的形成,这是重组介导的双链断裂修复的必要中间产物。

相似文献

1
Biochemical characterization of bacteriophage T4 Mre11-Rad50 complex.
J Biol Chem. 2011 Jan 28;286(4):2382-92. doi: 10.1074/jbc.M110.178871. Epub 2010 Nov 15.
2
ATP hydrolysis by RAD50 protein switches MRE11 enzyme from endonuclease to exonuclease.
J Biol Chem. 2012 Jan 20;287(4):2328-41. doi: 10.1074/jbc.M111.307041. Epub 2011 Nov 18.
4
Functional evaluation of bacteriophage T4 Rad50 signature motif residues.
Biochemistry. 2011 Jul 12;50(27):6030-40. doi: 10.1021/bi200184w. Epub 2011 Jun 15.
5
Disruption of the bacteriophage T4 Mre11 dimer interface reveals a two-state mechanism for exonuclease activity.
J Biol Chem. 2012 Sep 7;287(37):31371-81. doi: 10.1074/jbc.M112.392316. Epub 2012 Jul 13.
6
Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.
J Biol Chem. 2015 Sep 25;290(39):23905-15. doi: 10.1074/jbc.M115.675132. Epub 2015 Aug 4.
7
Autoinhibition of bacteriophage T4 Mre11 by its C-terminal domain.
J Biol Chem. 2014 Sep 19;289(38):26505-26513. doi: 10.1074/jbc.M114.583625. Epub 2014 Jul 30.
10
Functional evaluation of the C-terminal region of bacteriophage T4 Rad50.
Biochem Biophys Res Commun. 2020 May 28;526(2):485-490. doi: 10.1016/j.bbrc.2020.02.172. Epub 2020 Mar 29.

引用本文的文献

2
Three segment ligation of a 104 kDa multi-domain protein by SrtA and OaAEP1.
J Biomol NMR. 2023 Apr;77(1-2):25-37. doi: 10.1007/s10858-022-00409-w. Epub 2022 Dec 21.
6
The dynamic nature of the Mre11-Rad50 DNA break repair complex.
Prog Biophys Mol Biol. 2021 Aug;163:14-22. doi: 10.1016/j.pbiomolbio.2020.10.007. Epub 2020 Oct 24.
7
A Survey of Reported Disease-Related Mutations in the MRE11-RAD50-NBS1 Complex.
Cells. 2020 Jul 13;9(7):1678. doi: 10.3390/cells9071678.
8
DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP.
Sci Adv. 2020 Jan 8;6(2):eaay0922. doi: 10.1126/sciadv.aay0922. eCollection 2020 Jan.
9
Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context.
Front Mol Biosci. 2019 Jun 7;6:43. doi: 10.3389/fmolb.2019.00043. eCollection 2019.
10
Yeast XRS2 and human NBN gene: Experimental evidence for homology using codon optimized cDNA.
PLoS One. 2018 Nov 15;13(11):e0207315. doi: 10.1371/journal.pone.0207315. eCollection 2018.

本文引用的文献

1
RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function?
Chromosome Res. 2009;17(2):277-88. doi: 10.1007/s10577-008-9018-6.
2
RecBCD enzyme and the repair of double-stranded DNA breaks.
Microbiol Mol Biol Rev. 2008 Dec;72(4):642-71, Table of Contents. doi: 10.1128/MMBR.00020-08.
3
The P. furiosus mre11/rad50 complex promotes 5' strand resection at a DNA double-strand break.
Cell. 2008 Oct 17;135(2):250-60. doi: 10.1016/j.cell.2008.09.054.
4
Structural insights into ABC transporter mechanism.
Curr Opin Struct Biol. 2008 Dec;18(6):726-33. doi: 10.1016/j.sbi.2008.09.007. Epub 2008 Nov 5.
5
Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair.
Cell. 2008 Oct 3;135(1):97-109. doi: 10.1016/j.cell.2008.08.017.
7
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing.
Nature. 2008 Oct 9;455(7214):770-4. doi: 10.1038/nature07312. Epub 2008 Sep 21.
8
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.
Cell. 2008 Sep 19;134(6):981-94. doi: 10.1016/j.cell.2008.08.037.
9
Structure, function, and evolution of bacterial ATP-binding cassette systems.
Microbiol Mol Biol Rev. 2008 Jun;72(2):317-64, table of contents. doi: 10.1128/MMBR.00031-07.
10
Mechanism of eukaryotic homologous recombination.
Annu Rev Biochem. 2008;77:229-57. doi: 10.1146/annurev.biochem.77.061306.125255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验