Suppr超能文献

基于图像变形的锥形束 CT 在线校正运动伪影。

Reduction of motion artefacts in on-board cone beam CT by warping of projection images.

机构信息

North Western Medical Physics, The Christie NHS Foundation Trust, Manchester, UK.

出版信息

Br J Radiol. 2011 Mar;84(999):251-64. doi: 10.1259/bjr/90983944. Epub 2010 Nov 16.

Abstract

OBJECTIVE

We describe the development and testing of a motion correction method for flat panel imager-based cone beam CT (CBCT) based on warping of projection images.

METHODS

Markers within or on the surface of the patient were tracked and their mean three-dimensional (3D) position calculated. The two-dimensional (2D) cone beam projection images were then warped before reconstruction to place each marker at the projection from its mean 3D position. The motion correction method was tested using simulated cone beam projection images of a deforming virtual phantom, real CBCT images of a moving breast phantom and clinical CBCT images of a patient with breast cancer and another with pancreatic cancer undergoing radiotherapy.

RESULTS

In phantom studies, the method was shown to greatly reduce motion artefacts in the locality of the radiotherapy target and allowed the true surface shape to be accurately recovered. The breast phantom motion-compensated surface was within 1 mm of the true surface shape for 90% of surface points and greater than 2 mm from the true surface at only 2% of points. Clinical CBCT images showed improved image quality in the locality of the radiotherapy target after motion correction.

CONCLUSION

The proposed method is effective in reducing motion artefacts in CBCT images.

摘要

目的

我们描述了一种基于投影图像变形的平板成像体式锥形束 CT(CBCT)运动校正方法的开发和测试。

方法

跟踪患者体内或表面的标记物,并计算其三维(3D)平均位置。然后,在重建之前对二维(2D)锥形束投影图像进行变形,以使每个标记物位于其 3D 平均位置的投影处。使用变形虚拟体的模拟锥形束投影图像、移动乳房体模的真实 CBCT 图像以及接受放射治疗的乳腺癌和胰腺癌患者的临床 CBCT 图像对运动校正方法进行了测试。

结果

在体模研究中,该方法被证明可以大大减少放射治疗靶区附近的运动伪影,并允许准确恢复真实表面形状。对于 90%的表面点,乳房体模运动补偿后的表面在 1 毫米内与真实表面形状一致,只有 2%的点大于 2 毫米。临床 CBCT 图像显示运动校正后放射治疗靶区的图像质量得到改善。

结论

所提出的方法可有效减少 CBCT 图像中的运动伪影。

相似文献

1
Reduction of motion artefacts in on-board cone beam CT by warping of projection images.
Br J Radiol. 2011 Mar;84(999):251-64. doi: 10.1259/bjr/90983944. Epub 2010 Nov 16.
5
Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration.
Phys Med Biol. 2010 Dec 21;55(24):7439-52. doi: 10.1088/0031-9155/55/24/004. Epub 2010 Nov 19.
7
On-board four-dimensional digital tomosynthesis: first experimental results.
Med Phys. 2008 Aug;35(8):3574-83. doi: 10.1118/1.2953561.

引用本文的文献

2
The Application of Deep Learning on CBCT in Dentistry.
Diagnostics (Basel). 2023 Jun 14;13(12):2056. doi: 10.3390/diagnostics13122056.
3
Estimation of the radiation dose for dental spectral cone-beam CT.
Dentomaxillofac Radiol. 2021 Jul 1;50(5):20200372. doi: 10.1259/dmfr.20200372. Epub 2021 Apr 29.
4
An ex vivo study of automated motion artefact correction and the impact on cone beam CT image quality and interpretability.
Dentomaxillofac Radiol. 2018 Jul;47(5):20180013. doi: 10.1259/dmfr.20180013. Epub 2018 Mar 22.
5
Correction of patient motion in cone-beam CT using 3D-2D registration.
Phys Med Biol. 2017 Nov 9;62(23):8813-8831. doi: 10.1088/1361-6560/aa9254.
6
Artifacts: The downturn of CBCT image.
J Int Soc Prev Community Dent. 2015 Nov-Dec;5(6):440-5. doi: 10.4103/2231-0762.170523.
9
Respiratory Motion Compensation Using Diaphragm Tracking for Cone-Beam C-Arm CT: A Simulation and a Phantom Study.
Int J Biomed Imaging. 2013;2013:520540. doi: 10.1155/2013/520540. Epub 2013 Jun 6.
10
Artifacts caused by insufficient contrast medium filling during C-arm cone-beam CT scans: a phantom study.
Radiol Phys Technol. 2014 Jan;7(1):25-34. doi: 10.1007/s12194-013-0227-0. Epub 2013 Jun 18.

本文引用的文献

2
Percutaneous implantation of fiducial markers for imaging-guided radiation therapy.
AJR Am J Roentgenol. 2009 Apr;192(4):1090-6. doi: 10.2214/AJR.08.1399.
3
Comparison of analytic and algebraic methods for motion-compensated cone-beam CT reconstruction of the thorax.
IEEE Trans Med Imaging. 2009 Oct;28(10):1513-25. doi: 10.1109/TMI.2008.2008962. Epub 2009 Feb 10.
5
Projection-based motion compensation for gated coronary artery reconstruction from rotational x-ray angiograms.
Phys Med Biol. 2008 Jul 21;53(14):3807-20. doi: 10.1088/0031-9155/53/14/007. Epub 2008 Jun 26.
6
Chemoradiotherapy for locally advanced pancreatic cancer: a radiotherapy dose escalation and organ motion study.
Clin Oncol (R Coll Radiol). 2008 Sep;20(7):541-7. doi: 10.1016/j.clon.2008.03.004. Epub 2008 Jun 18.
7
Anatomical imaging for radiotherapy.
Phys Med Biol. 2008 Jun 21;53(12):R151-91. doi: 10.1088/0031-9155/53/12/R01. Epub 2008 May 21.
8
Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer.
Int J Radiat Oncol Biol Phys. 2008 Nov 1;72(3):678-86. doi: 10.1016/j.ijrobp.2008.01.051. Epub 2008 Apr 18.
9
Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images.
Phys Med Biol. 2008 Feb 21;53(4):1087-98. doi: 10.1088/0031-9155/53/4/018. Epub 2008 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验