Suppr超能文献

A Q63E Rhodobacter sphaeroides AppA BLUF 结构域突变体处于假光激发信号状态。

A Q63E Rhodobacter sphaeroides AppA BLUF domain mutant is locked in a pseudo-light-excited signaling state.

机构信息

Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States.

出版信息

Biochemistry. 2010 Dec 21;49(50):10682-90. doi: 10.1021/bi1002162. Epub 2010 Nov 24.

Abstract

The AppA BLUF photoreceptor from Rhodobacter sphaeroides contains a conserved key residue, Gln63, that is thought to undergo a shift in hydrogen-bonding interactions when a bound flavin is light excited. In this study we have characterized two substitution mutants of Gln63 (Q63E, Q63L) in the context of two constructs of the BLUF domain that have differing lengths, AppA1-126 and AppA17-133. Q63L mutations in both constructs exhibit a blue-shifted flavin absorption spectrum as well as a loss of the photocycle. Altered fluorescence emission and fluorescence quenching of the Q63L mutant indicate significant perturbations of hydrogen bonding to the flavin and surrounding amino acids which is confirmed by (1)H-(15)N HSQC NMR spectroscopy. The Q63E substitution mutant is constitutively locked in a lit signaling state as evidenced by a permanent 3 nm red shift of the flavin absorption, quenching of flavin fluorescence emission, analysis of (1)H-(15)N HSQC spectra, and the inability of full-length AppA Q63E to bind to the PpsR repressor. The significance of these findings on the mechanism of light-induced output signaling is discussed.

摘要

来自球形红杆菌的 AppA BLUF 光感受器含有一个保守的关键残基 Gln63,当结合的黄素被光激发时,它被认为会在氢键相互作用中发生移动。在这项研究中,我们在 BLUF 结构域的两个构建体的背景下表征了 Gln63 的两个取代突变体(Q63E、Q63L),这两个构建体的长度不同,分别为 AppA1-126 和 AppA17-133。两个构建体中的 Q63L 突变都表现出黄素吸收光谱的蓝移以及光循环的丧失。Q63L 突变体的荧光发射和荧光猝灭的改变表明对黄素和周围氨基酸的氢键有明显的干扰,这通过(1)H-(15)N HSQC NMR 光谱得到证实。Q63E 取代突变体被永久锁定在发光信号状态,这表现在黄素吸收的永久性 3nm 红移、黄素荧光发射的猝灭、(1)H-(15)N HSQC 光谱的分析,以及全长 AppA Q63E 无法与 PpsR 阻遏物结合。这些发现对光诱导输出信号机制的意义将进行讨论。

相似文献

1
A Q63E Rhodobacter sphaeroides AppA BLUF domain mutant is locked in a pseudo-light-excited signaling state.
Biochemistry. 2010 Dec 21;49(50):10682-90. doi: 10.1021/bi1002162. Epub 2010 Nov 24.
2
On the mechanism of activation of the BLUF domain of AppA.
Biochemistry. 2006 Jan 10;45(1):51-60. doi: 10.1021/bi051367p.
6
Vibrational assignment of the ultrafast infrared spectrum of the photoactivatable flavoprotein AppA.
J Phys Chem B. 2012 Sep 6;116(35):10722-9. doi: 10.1021/jp305220m. Epub 2012 Aug 27.
7
Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides.
Biochemistry. 2005 Jun 7;44(22):7998-8005. doi: 10.1021/bi0502691.
9
The critical role of a hydrogen bond between Gln63 and Trp104 in the blue-light sensing BLUF domain that controls AppA activity.
J Mol Biol. 2007 May 18;368(5):1223-30. doi: 10.1016/j.jmb.2007.02.087. Epub 2007 Mar 6.
10
Ultrafast structural dynamics in BLUF domains: transient infrared spectroscopy of AppA and its mutants.
J Am Chem Soc. 2007 Dec 19;129(50):15556-64. doi: 10.1021/ja074074n. Epub 2007 Nov 22.

引用本文的文献

1
Protein design accelerates the development and application of optogenetic tools.
Comput Struct Biotechnol J. 2025 Feb 21;27:717-732. doi: 10.1016/j.csbj.2025.02.014. eCollection 2025.
2
Probing the Signal Transduction Mechanism of the Light-Activated Adenylate Cyclase OaPAC Using Unnatural Amino Acid Mutagenesis.
ACS Chem Biol. 2025 Feb 21;20(2):369-377. doi: 10.1021/acschembio.4c00627. Epub 2025 Jan 22.
4
The nature of proton-coupled electron transfer in a blue light using flavin domain.
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2203996119. doi: 10.1073/pnas.2203996119. Epub 2022 Jun 23.
5
Time-resolved diffusion reveals photoreactions of BLUF proteins with similar functional domains.
Photochem Photobiol Sci. 2022 Apr;21(4):493-507. doi: 10.1007/s43630-022-00214-2. Epub 2022 Apr 7.
7
Photochemistry of flavoprotein light sensors.
Nat Chem Biol. 2014 Oct;10(10):801-9. doi: 10.1038/nchembio.1633.
8
Revealing the functional states in the active site of BLUF photoreceptors from electrochromic shift calculations.
J Phys Chem B. 2014 Sep 25;118(38):11109-19. doi: 10.1021/jp506400y. Epub 2014 Sep 5.
9
Redox and light control the heme-sensing activity of AppA.
mBio. 2013 Aug 27;4(5):e00563-13. doi: 10.1128/mBio.00563-13.
10
Controlling the delicate balance of tetrapyrrole biosynthesis.
Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120262. doi: 10.1098/rstb.2012.0262. Print 2013 Jul 19.

本文引用的文献

3
Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase.
Nature. 2009 Jun 18;459(7249):1015-8. doi: 10.1038/nature07966.
5
Structure and insight into blue light-induced changes in the BlrP1 BLUF domain.
Biochemistry. 2009 Mar 31;48(12):2620-9. doi: 10.1021/bi802237r.
6
Influence of a joining helix on the BLUF domain of the YcgF photoreceptor from Escherichia coli.
Chembiochem. 2008 Oct 13;9(15):2463-73. doi: 10.1002/cbic.200800280.
7
Structural requirements for key residues and auxiliary portions of a BLUF domain.
Biochemistry. 2008 Sep 30;47(39):10271-80. doi: 10.1021/bi8011687. Epub 2008 Sep 5.
8
A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors.
J Am Chem Soc. 2008 Sep 17;130(37):12501-13. doi: 10.1021/ja803726a. Epub 2008 Aug 23.
9
Structures of the chromophore binding sites in BLUF domains as studied by molecular dynamics and quantum chemical calculations.
Photochem Photobiol. 2008 Jul-Aug;84(4):1003-10. doi: 10.1111/j.1751-1097.2008.00351.x. Epub 2008 Apr 24.
10
Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors.
Biophys J. 2008 May 15;94(10):3872-9. doi: 10.1529/biophysj.107.124172. Epub 2008 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验