The James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.
J Phys Chem A. 2011 Apr 28;115(16):3859-66. doi: 10.1021/jp108292j. Epub 2010 Nov 17.
We present the results of a computer simulation study of the liquid density distribution normal to the interface between liquid Hg and the reconstructed (0001) face of sapphire. The simulations are based on an extension of the self-consistent quantum Monte Carlo scheme previously used to study the structure of the liquid metal-vapor interface. The calculated density distribution is in very good agreement with that inferred from the recent experimental data of Tamam et al. (J. Phys. Chem. Lett. 2010, 1, 1041-1045). We conclude that, to account for the difference in structure between the liquid Hg-vapor and liquid-Hg-reconstructed (0001) Al(2)O(3) interfaces, it is not necessary to assume there is charge transfer from the Hg to the Al(2)O(3). Rather, the available experimental data are adequately reproduced when the van der Waals interactions of the Al and O atoms with Hg atoms and the exclusion of electron density from Al(2)O(3) via repulsion of the electrons from the closed shells of the ions in the solid are accounted for.
我们呈现了一项计算机模拟研究的结果,该研究旨在探讨液体汞与蓝宝石重构(0001)面之间界面处的液体密度分布。该模拟基于先前用于研究液态金属-蒸气界面结构的自洽量子蒙特卡罗方案的扩展。计算出的密度分布与 Tamam 等人最近的实验数据推断结果非常吻合(J. Phys. Chem. Lett. 2010, 1, 1041-1045)。我们得出结论,为了说明液态汞-蒸气和液态-Hg-重构(0001)Al(2)O(3)界面之间结构的差异,没有必要假设Hg 原子向 Al(2)O(3)转移电荷。相反,当考虑到 Al 和 O 原子与 Hg 原子的范德华相互作用以及通过固体中离子的闭壳层排斥电子来排除 Al(2)O(3)中的电子密度时,可用的实验数据可以得到充分再现。