Department Chemie der Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (Haus F), 81377 München, Germany.
Acc Chem Res. 2010 Dec 21;43(12):1537-49. doi: 10.1021/ar100091m. Epub 2010 Nov 17.
Chemists are well trained to recognize what controls relative reactivities within a series of compounds. Thus, it is well-known how the rate of ionization of R-X is affected by the stabilization of the carbocation R(+), the nature of the leaving group X(-), or the solvent ionizing power. On the other hand, when asked to estimate the half-life of the ionization of a certain substrate in a certain solvent, most chemists resign. This question, however, is crucial in daily laboratory practice. Can a certain substrate R-X be handled in alcoholic or aqueous solution without being solvolyzed? Can a biologically active tertiary amine or azole be released by ionization of a quaternary ammonium ion? In this Account, we describe a straightforward means of addressing such experimental concerns. A semiquantitative answer to these questions is given by the correlation equation log k(25 °C) = s(f)(N(f) + E(f)), in which carbocations R(+) are characterized by the electrofugality parameter E(f), and leaving groups X(-) in a certain solvent are characterized by the nucleofugality parameter N(f) and the nucleofuge-specific sensitivity parameter s(f). As s(f) is typically around 1 (0.8 < s(f) < 1.2), ionization half-lives of around 1 h at 25 °C can be expected when E(f) + N(f) = -4. This correlation equation is formally analogous to the linear free energy relationship that was used to derive the most comprehensive nucleophilicity and electrophilicity scales presently available (Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. Reference Scales for the Characterization of Cationic Electrophiles and Neutral Nucleophiles. J. Am. Chem. Soc. 2001, 123, 9500-9512). By subjecting 628 solvolysis rate constants k(25 °C) for different benzhydryl derivatives (aryl(2)CH-X) to a least-squares minimization on the basis of the correlation equation, we obtained and tabulate here (i) the electrofugality parameters E(f) for 39 benzhydrylium ions and (ii) the nucleofuge-specific parameters N(f) and s(f) for 101 combinations of common leaving groups and solvents. We show that the E(f) parameters of the reference electrofuges can be used to determine N(f) and s(f) for almost any combination of leaving group and solvent. The nucleofuge-specific parameters of the reference systems can analogously be used to derive the electrofugalities E(f) of other types of carbocations. While it has long been recognized that good nucleophiles are not necessarily poor nucleofuges, it is now reported that there is also no general inverse relationship between electrophilicity and electrofugality. Although more electrophilic methyl- and methoxy-substituted benzhydrylium ions are generally weaker electrofuges, the inverse relationship between electrophilicity and electrofugality breaks down in the series of amino-substituted benzhydrylium ions. Because neither differential solvation of the carbocations nor steric effects are explicitly considered by this treatment, predictions for substrates not belonging to the benzhydrylium series are only reliable within a factor of 10. This is hardly acceptable to physical organic chemists, who are used to high precision within narrow groups of compounds. The synthetic chemist, however, who is seeking orientation in a reactivity range of 25 orders of magnitude, might appreciate the simplicity of this approach, which only requires considering the sum E(f) + N(f) or consulting our summary graphs.
化学家经过专门训练,能够识别一系列化合物中相对反应性的控制因素。因此,人们熟知 R-X 的离解速率如何受到碳正离子 R(+)的稳定性、离去基团 X(-)的性质或溶剂离解能力的影响。另一方面,当被要求估计特定底物在特定溶剂中的离解半衰期时,大多数化学家都会辞职。这个问题在日常实验室实践中至关重要。某些底物 R-X 是否可以在醇或水溶液中处理而不会发生溶剂解?生物活性的叔胺或唑能否通过季铵离子的离解释放?在本报告中,我们描述了一种解决此类实验问题的简单方法。通过以下相关方程 log k(25 °C) = s(f)(N(f) + E(f)),可以对半衰期的问题给出一个半定量的答案,其中碳正离子 R(+)由电离率参数 E(f)表征,而在特定溶剂中的离去基团 X(-)由亲核性参数 N(f)和离去基团特异性敏感性参数 s(f)表征。由于 s(f)通常约为 1(0.8 < s(f) < 1.2),因此当 E(f) + N(f) = -4 时,在 25°C 下的离解半衰期约为 1 小时。该相关方程在形式上类似于线性自由能关系,该关系用于推导出目前可用的最全面的亲核性和电亲性标度(Mayr, H.; Bug, T.; Gotta, M. F.; Hering, N.; Irrgang, B.; Janker, B.; Kempf, B.; Loos, R.; Ofial, A. R.; Remennikov, G.; Schimmel, H. Reference Scales for the Characterization of Cationic Electrophiles and Neutral Nucleophiles. J. Am. Chem. Soc. 2001, 123, 9500-9512)。我们通过将 628 种不同苯甲基衍生物(aryl(2)CH-X)的溶剂解速率常数 k(25 °C)进行最小二乘最小化,基于相关方程,我们获得并在此处列出了(i)39 种苯甲基离子的电离率参数 E(f)和(ii)101 种常见离去基团和溶剂组合的亲核性特异性参数 N(f)和 s(f)。我们表明,参考离解基团的 E(f)参数可用于确定几乎任何离去基团和溶剂组合的 N(f)和 s(f)。参考体系的亲核性特异性参数也可用于推导出其他类型的碳正离子的电离率 E(f)。虽然人们早就认识到良好的亲核试剂不一定是差的亲核性试剂,但现在也报道了亲电性和电离率之间没有一般的反比关系。尽管一般来说,取代基为甲基和甲氧基的苯甲基正离子的亲电性更强,它们的电离率和电离率之间的反比关系在氨基取代的苯甲基正离子系列中被打破。由于该处理方法没有明确考虑碳正离子的差分溶剂化或空间位阻效应,因此不属于苯甲基系列的底物的预测仅在 10 倍的范围内可靠。对于习惯了在化合物的窄组内进行高精度测量的物理有机化学家来说,这几乎是不可接受的。然而,对于在 25 个数量级的反应性范围内寻求指导的合成化学家来说,他们可能会欣赏这种简单的方法,这种方法只需要考虑 E(f) + N(f)的总和或查阅我们的摘要图表。