Schulz Tim J, Westermann Dirk, Isken Frank, Voigt Anja, Laube Beate, Thierbach René, Kuhlow Doreen, Zarse Kim, Schomburg Lutz, Pfeiffer Andreas F H, Tschöpe Carsten, Ristow Michael
Department of Human Nutrition, Institute of Nutrition, University of Jena, Germany.
Aging (Albany NY). 2010 Nov;2(11):843-53. doi: 10.18632/aging.100234.
Cardiac failure is the most prevalent cause of death at higher age, and is commonly associated with impaired energy homeostasis in the heart. Mitochondrial metabolism appears critical to sustain cardiac function to counteract aging. In this study, we generated mice transgenically over-expressing the mitochondrial protein frataxin, which promotes mitochondrial energy conversion by controlling iron-sulfur-cluster biogenesis and hereby mitochondrial electron flux. Hearts of transgenic mice displayed increased mitochondrial energy metabolism and induced stress defense mechanisms, while overall oxidative stress was decreased. Following standardized exposure to doxorubicin to induce experimental cardiomyopathy, cardiac function and survival was significantly improved in the transgenic mice. The insulin/IGF-1 signaling cascade is an important pathway that regulates survival following cytotoxic stress through the downstream targets protein kinase B, Akt, and glycogen synthase kinase 3. Activation of this cascade is markedly inhibited in the hearts of wild-type mice following induction of cardiomyopathy. By contrast, transgenic overexpression of frataxin rescues impaired insulin/IGF-1 signaling and provides a mechanism to explain enhanced cardiac stress resistance in transgenic mice. Taken together, these findings suggest that increased mitochondrial metabolism elicits an adaptive response due to mildly increased oxidative stress as a consequence of increased oxidative energy conversion, previously named mitohormesis. This in turn activates protective mechanisms which counteract cardiotoxic stress and promote survival in states of experimental cardiomyopathy. Thus, induction of mitochondrial metabolism may be considered part of a generally protective mechanism to prevent cardiomyopathy and cardiac failure.
心力衰竭是高龄人群中最常见的死亡原因,通常与心脏能量稳态受损有关。线粒体代谢对于维持心脏功能以对抗衰老似乎至关重要。在本研究中,我们构建了转基因过表达线粒体蛋白酵母铁硫蛋白的小鼠,该蛋白通过控制铁硫簇生物合成进而控制线粒体电子通量来促进线粒体能量转换。转基因小鼠的心脏显示出线粒体能量代谢增加,并诱导了应激防御机制,而整体氧化应激则有所降低。在标准化暴露于阿霉素以诱导实验性心肌病后,转基因小鼠的心脏功能和存活率显著提高。胰岛素/胰岛素样生长因子-1信号级联是一条重要途径,它通过下游靶点蛋白激酶B、Akt和糖原合酶激酶3来调节细胞毒性应激后的存活。在诱导心肌病后,野生型小鼠心脏中该级联的激活受到明显抑制。相比之下,酵母铁硫蛋白的转基因过表达挽救了受损的胰岛素/胰岛素样生长因子-1信号,并提供了一种机制来解释转基因小鼠心脏应激抗性增强的现象。综上所述,这些发现表明,线粒体代谢增加会由于氧化能量转换增加导致轻度氧化应激增加而引发适应性反应,这一现象先前被称为线粒体应激反应。这反过来又激活了保护机制,这些机制可对抗心脏毒性应激并促进实验性心肌病状态下的存活。因此,诱导线粒体代谢可被视为预防心肌病和心力衰竭的一般保护机制的一部分。