Department of Biomedical Engineering, University of California, Davis, California 95616, USA.
Med Phys. 2010 Oct;37(10):5530-40. doi: 10.1118/1.3490711.
The accuracy of the system model that governs the transformation from the image space to the projection space in positron emission tomography (PET) greatly affects the quality of reconstructed images. For efficient computation in iterative reconstructions, the system model in PET can be factored into a product of geometric projection and sinogram blurring function. To further speed up reconstruction, fully 3D PET data can be rebinned into a stack of 2D sinograms and then be reconstructed using 2D iterative algorithms. The purpose of this work is to develop a method to estimate the sinogram blurring function to be used in reconstruction of Fourier-rebinned data.
In a previous work, the authors developed an approach to estimating the sinogram blurring function of nonrebinned PET data from experimental scans of point sources. In this study, the authors extend this method to the estimation of sinogram blurring function for Fourier-rebinned PET data. A point source was scanned at a set of sampled positions in the microPET II scanner. The sinogram blurring function is considered to be separable between the transaxial and axial directions. A radially and angularly variant 2D blurring function is estimated from Fourier-rebinned point source scans to model the transaxial blurring with consideration of the detector block structure of the scanner; a space-variant 1D blurring kernel along the axial direction is estimated separately to model the correlation between neighboring planes due to detector intrinsic blurring and Fourier rebinning. The estimated sinogram blurring function is incorporated in a 2D maximum a posteriori (MAP) reconstruction algorithm for image reconstruction.
Physical phantom experiments were performed on the microPET II scanner to validate the proposed method. The authors compared the proposed method to 2D MAP reconstruction without sinogram blurring model and 2D MAP reconstruction with a Monte Carlo based blurring model. The results show that the proposed method produces images with improved contrast and spatial resolution. The reconstruction time is unaffected by the new method since the blurring component takes a relatively negligible part of the overall reconstruction time.
The proposed method can estimate sinogram blurring matrix for Fourier-rebinned PET data and can be used to improve contrast and spatial resolution of reconstructed images. The method can be applied to other human and animal scanners.
在正电子发射断层扫描(PET)中,控制从图像空间到投影空间转换的系统模型的准确性极大地影响了重建图像的质量。为了在迭代重建中进行高效计算,可以将 PET 中的系统模型分解为几何投影和正弦图模糊函数的乘积。为了进一步加快重建速度,可以将完全的 3D PET 数据重新分配到 2D 正弦图堆栈中,然后使用 2D 迭代算法进行重建。本工作的目的是开发一种用于重建傅里叶重排数据的正弦图模糊函数估计方法。
在以前的工作中,作者开发了一种从非重排 PET 数据的实验扫描中估计正弦图模糊函数的方法。在这项研究中,作者将这种方法扩展到用于估计傅里叶重排 PET 数据的正弦图模糊函数。在 microPET II 扫描仪中,在一组采样位置上扫描一个点源。将正弦图模糊函数视为在横向和轴向方向上可分离的。从傅里叶重排的点源扫描中估计径向和角度变化的 2D 模糊函数,以考虑到扫描仪的探测器块结构,对横向模糊进行建模;分别估计沿轴向的空间变化 1D 模糊核,以模拟由于探测器固有模糊和傅里叶重排而导致相邻平面之间的相关性。所估计的正弦图模糊函数被合并到 2D 最大后验(MAP)重建算法中,以进行图像重建。
在 microPET II 扫描仪上进行了物理体模实验以验证所提出的方法。作者将该方法与没有正弦图模糊模型的 2D MAP 重建和基于蒙特卡罗的模糊模型的 2D MAP 重建进行了比较。结果表明,该方法生成的图像具有改善的对比度和空间分辨率。由于模糊分量在整个重建时间中占相对较小的部分,因此新方法不会影响重建时间。
所提出的方法可以估计傅里叶重排 PET 数据的正弦图模糊矩阵,并可用于改善重建图像的对比度和空间分辨率。该方法可应用于其他人和动物扫描仪。