可再生纳米复合层层组装催化界面用于生物传感应用。
Renewable nanocomposite layer-by-layer assembled catalytic interfaces for biosensing applications.
机构信息
Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States.
出版信息
Langmuir. 2010 Dec 21;26(24):19114-9. doi: 10.1021/la103379u. Epub 2010 Nov 19.
A novel, easily renewable nanocomposite interface based on layer-by-layer (LbL) assembled cationic/anionic layers of carbon nanotubes customized with biopolymers is reported. A simple approach is proposed to fabricate a nanoscale structure composed of alternating layers of oxidized multiwalled carbon nanotubes upon which is immobilized either the cationic enzyme organophosphorus hydrolase (OPH; MWNT-OPH) or the anionic DNA (MWNT-DNA). The presence of carbon nanotubes with large surface area, high aspect ratio and excellent conductivity provides reliable immobilization of enzyme at the interface and promotes better electron transfer rates. The oxidized MWNTs were characterized by thermogravimetric analysis and Raman spectroscopy. Fourier transform infrared spectroscopy showed the surface functionalization of the MWNTs and successful immobilization of OPH on the MWNTs. Scanning electron microscopy images revealed that MWNTs were shortened during sonication and that LbL of the MWNT/biopolymer conjugates resulted in a continuous surface with a layered structure. The catalytic activity of the biopolymer layers was characterized using absorption spectroscopy and electrochemical analysis. Experimental results show that this approach yields an easily fabricated catalytic multilayer with well-defined structures and properties for biosensing applications whose interface can be reactivated via a simple procedure. In addition, this approach results in a biosensor with excellent sensitivity, a reliable calibration profile, and stable electrochemical response.
一种新型的、易于更新的纳米复合界面,基于经过生物聚合物定制的层层(LbL)组装的碳纳米管阳离子/阴离子层。报告了一种简单的方法来制造由交替的氧化多壁碳纳米管层组成的纳米结构,在这些层上固定阳离子酶有机磷水解酶(OPH;MWNT-OPH)或阴离子 DNA(MWNT-DNA)。具有大表面积、高纵横比和优异导电性的碳纳米管的存在为界面上酶的可靠固定提供了可靠的保证,并促进了更好的电子转移速率。通过热重分析和拉曼光谱对氧化 MWNTs 进行了表征。傅里叶变换红外光谱显示了 MWNTs 的表面功能化和 OPH 在 MWNTs 上的成功固定。扫描电子显微镜图像显示,MWNTs 在超声过程中缩短,MWNT/生物聚合物缀合物的 LbL 导致具有分层结构的连续表面。使用吸收光谱和电化学分析对生物聚合物层的催化活性进行了表征。实验结果表明,这种方法可得到易于制造的具有良好定义结构和性能的催化多层结构,其界面可通过简单的过程重新激活。此外,该方法得到了一种具有出色灵敏度、可靠校准曲线和稳定电化学响应的生物传感器。