Suppr超能文献

描述一种带有集成脉动泵的优化血流氧合器。

Description of a flow optimized oxygenator with integrated pulsatile pump.

机构信息

Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Aachen, Germany.

出版信息

Artif Organs. 2010 Nov;34(11):904-10. doi: 10.1111/j.1525-1594.2010.01123.x.

Abstract

Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for several lung and heart diseases in the field of neonatal and pediatric medicine (e.g., acute respiratory distress syndrome, congenital heart failure, cardiomyopathy). Current ECMO systems are typically composed of an oxygenator and a separate nonpulsatile blood pump. An oxygenator with an integrated pulsatile blood pump for small infant ECMO was developed, and this novel concept was tested regarding functionality and gas exchange rate. Pulsating silicone tubes (STs) were driven by air pressure and placed inside the cylindrical fiber bundle of an oxygenator to be used as a pump module. The findings of this study confirm that pumping blood with STs is a viable option for the future. The maximum gas exchange rate for oxygen is 48mL/min/L(blood) at a medium blood flow rate of about 300mL/min. Future design steps were identified to optimize the flow field through the fiber bundle to achieve a higher gas exchange rate. First, the packing density of the hollow-fiber bundle was lower than commercial oxygenators due to the manual manufacturing. By increasing this packing density, the gas exchange rate would increase accordingly. Second, distribution plates for a more uniform blood flow can be placed at the inlet and outlet of the oxygenator. Third, the hollow-fiber membranes can be individually placed to ensure equal distances between the surrounding hollow fibers.

摘要

体外膜肺氧合(ECMO)是新生儿和儿科医学领域几种肺部和心脏疾病的成熟治疗方法(例如,急性呼吸窘迫综合征,先天性心力衰竭,心肌病)。目前的 ECMO 系统通常由氧合器和单独的非搏动性血泵组成。已经开发出一种用于小型婴儿 ECMO 的带有集成搏动性血泵的氧合器,并且已经针对该新颖概念的功能和气体交换率对其进行了测试。脉动硅管(ST)由气压驱动,并放置在氧合器的圆柱形纤维束内部,用作泵模块。这项研究的结果证实,使用 ST 泵血是未来的可行选择。在中等血流速度约为 300mL/min 的情况下,最大氧气气体交换率为 48mL/min/L(血液)。确定了未来的设计步骤,以通过纤维束优化流场,从而实现更高的气体交换率。首先,由于手动制造,空心纤维束的填充密度低于商业氧合器。通过增加此填充密度,气体交换率将相应增加。其次,可以在氧合器的入口和出口处放置分配板,以实现更均匀的血流分布。第三,可以单独放置空心纤维膜,以确保周围空心纤维之间的距离相等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验