Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
Ultramicroscopy. 2011 Jun;111(7):807-11. doi: 10.1016/j.ultramic.2010.10.016. Epub 2010 Nov 9.
Ultrafast nanocrystallography has the potential to revolutionize biology by enabling structural elucidation of proteins for which it is possible to grow crystals with 10 or fewer unit cells on the side. The success of nanocrystallography depends on robust orientation-determination procedures that allow us to average diffraction data from multiple nanocrystals to produce a three-dimensional (3D) diffraction data volume with a high signal-to-noise ratio. Such a 3D diffraction volume can then be phased using standard crystallographic techniques. "Indexing" algorithms used in crystallography enable orientation determination of diffraction data from a single crystal when a relatively large number of reflections are recorded. Here we show that it is possible to obtain the exact lattice geometry from a smaller number of measurements than standard approaches using a basis pursuit solver.
超快晶体学有可能通过对边长为 10 个或更少单位晶胞的晶体进行结构解析,从而彻底改变生物学。晶体学的成功取决于强大的定向确定程序,该程序允许我们从多个纳米晶体中平均衍射数据,以产生具有高信噪比的三维(3D)衍射数据体。然后可以使用标准晶体学技术对该 3D 衍射体积进行相分析。晶体学中使用的“索引”算法可在记录相对大量反射时确定单个晶体的衍射数据的方向。在这里,我们表明,使用基础求解器,可以从比标准方法少的测量值中获得精确的晶格几何形状。