Lomonosov Moscow State University, Faculty of Chemistry, Department of Chemical Technology and New Materials, Moscow, Russia.
Adv Colloid Interface Sci. 2011 May 11;164(1-2):89-99. doi: 10.1016/j.cis.2010.10.004. Epub 2010 Oct 27.
Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4), C(2)H(6), C(3)H(8), C(4)H(10), C(2)H(4), C(3)H(6), C(4)H(8) - 1, C(2)H(2), C(3)H(4)-m (methylacetylene) and C(3)H(4)-a (allen) is determined by using two above mentioned approaches. All of this allows calculating preliminary the permeability parameters of above mentioned gases for most part of known polymers based on limited experimental data. The new correlations suggested demonstrate that the available free volume of polymeric matrix plays an important role in providing of rate and selectivity of gas diffusion for glassy-like polymers; the rate and selectivity of gas diffusion in rubbers is affected mainly by cohesion energy density (CED) the both polymer parameters being calculated by traditional additive group contributions technique. Results of present study are demonstrated by calculation of expected permeability parameters in relation to lower hydrocarbons and some toxic gases for polynorbornene based polymers, PIM and PTMSP outlining potential of practical application for new membrane polymers.
膜气体分离技术(空气分离、脱氢过程中氢气回收等)传统上使用玻璃态聚合物膜,其“小分子”气体的渗透性占主导地位。为此,使用基于低自由体积玻璃态聚合物(例如聚砜、四溴聚碳酸酯和聚酰亚胺)的膜。另一方面,膜方法在从空气中回收挥发性有机化合物(VOC)和一些有毒气体、分离含有较低烃类的混合物(在石油化工和炼油中)方面的应用需要具有相对较大分子尺寸的组件渗透更好的膜。一般来说,这种渗透性是橡胶和高自由体积玻璃态聚合物的特征。积累的数据文件(超过 1500 种聚合物材料)代表了这些“边界”内的参数“区域”。本文考虑了两种主要的聚合物气体渗透性预测方法:(1)对已发表的聚合物传输参数进行统计处理,(2)使用考虑扩散分子和聚合物基质关键特性的“扩散跳跃”模型进行预测。在(1)的框架内,本文提出了使用“选择性/渗透性”相关性估计聚合物气体渗透性的 N 维方法。结果发现,在 n=4 时提供了最佳的预测精度。在溶液扩散机制(2)的框架内,关键特性包括穿透物种的有效分子横截面积,负责在聚合物基质中进行分子运输,以及众所周知的用于气体-气体相互作用的 6-12 势能的力常数(ε/k)(eff i)。包括惰性气体(氦、氖、氩、氪、氙)、永久气体(H(2)、O(2)、N(2)、CO)、压载气和有毒气体(CO(2)、NO(,)NO(2)、SO(2)、H(2)S)以及线性低级烃(CH(4)、C(2)H(6)、C(3)H(8)、C(4)H(10)、C(2)H(4)、C(3)H(6)、C(4)H(8)-1、C(2)H(2)、C(3)H(4)-m(甲基乙炔)和 C(3)H(4)-a(丙二烯)的有效分子横截面积的校正集通过使用上述两种方法确定。所有这些都允许基于有限的实验数据,初步计算上述大部分已知聚合物中上述气体的渗透性参数。所提出的新相关性表明,聚合物基质的可用自由体积在提供玻璃态聚合物的气体扩散速率和选择性方面起着重要作用;橡胶中气体扩散的速率和选择性主要受聚合能密度(CED)的影响,这两个聚合物参数都是通过传统的加和基团贡献技术计算的。本研究的结果通过计算与较低烃类和一些有毒气体相关的预期渗透性参数来证明,基于降冰片烯的聚合物、PIM 和 PTMSP 突出了新型膜聚合物的实际应用潜力。
Macromol Rapid Commun. 2011-3-11
Adv Colloid Interface Sci. 2014-10-16
Annu Rev Chem Biomol Eng. 2011
Chem Soc Rev. 2009-10-6
Indian J Environ Health. 2001-4
Environ Sci Technol. 2025-1-21
Membranes (Basel). 2022-11-22
Polymers (Basel). 2018-7-27