Suppr超能文献

提升彩色人脸识别中的颜色特征选择。

Boosting color feature selection for color face recognition.

机构信息

Image and Video Systems Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

出版信息

IEEE Trans Image Process. 2011 May;20(5):1425-34. doi: 10.1109/TIP.2010.2093906. Epub 2010 Nov 18.

Abstract

This paper introduces the new color face recognition (FR) method that makes effective use of boosting learning as color-component feature selection framework. The proposed boosting color-component feature selection framework is designed for finding the best set of color-component features from various color spaces (or models), aiming to achieve the best FR performance for a given FR task. In addition, to facilitate the complementary effect of the selected color-component features for the purpose of color FR, they are combined using the proposed weighted feature fusion scheme. The effectiveness of our color FR method has been successfully evaluated on the following five public face databases (DBs): CMU-PIE, Color FERET, XM2VTSDB, SCface, and FRGC 2.0. Experimental results show that the results of the proposed method are impressively better than the results of other state-of-the-art color FR methods over different FR challenges including highly uncontrolled illumination, moderate pose variation, and small resolution face images.

摘要

本文介绍了一种新的彩色人脸识别 (FR) 方法,该方法有效利用了提升学习作为颜色分量特征选择框架。所提出的提升颜色分量特征选择框架旨在从各种颜色空间(或模型)中找到最佳的颜色分量特征集,旨在为给定的 FR 任务实现最佳的 FR 性能。此外,为了促进所选颜色分量特征的互补效果,我们使用提出的加权特征融合方案对其进行组合。我们的彩色 FR 方法的有效性已成功在以下五个公共人脸数据库(DB)上进行了评估:CMU-PIE、Color FERET、XM2VTSDB、SCface 和 FRGC 2.0。实验结果表明,在不同的 FR 挑战中,包括高度不受控制的光照、适度的姿势变化和小分辨率人脸图像,所提出的方法的结果明显优于其他最先进的彩色 FR 方法的结果。

相似文献

1
Boosting color feature selection for color face recognition.
IEEE Trans Image Process. 2011 May;20(5):1425-34. doi: 10.1109/TIP.2010.2093906. Epub 2010 Nov 18.
2
Color local texture features for color face recognition.
IEEE Trans Image Process. 2012 Mar;21(3):1366-80. doi: 10.1109/TIP.2011.2168413. Epub 2011 Sep 15.
3
Local color vector binary patterns from multichannel face images for face recognition.
IEEE Trans Image Process. 2012 Apr;21(4):2347-53. doi: 10.1109/TIP.2011.2181526. Epub 2011 Dec 23.
4
Extracting multiple features in the CID color space for face recognition.
IEEE Trans Image Process. 2010 Sep;19(9):2502-9. doi: 10.1109/TIP.2010.2048963. Epub 2010 Apr 22.
5
Color face recognition for degraded face images.
IEEE Trans Syst Man Cybern B Cybern. 2009 Oct;39(5):1217-30. doi: 10.1109/TSMCB.2009.2014245. Epub 2009 Mar 24.
6
Capitalize on dimensionality increasing techniques for improving Face Recognition Grand Challenge performance.
IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):725-37. doi: 10.1109/TPAMI.2006.90.
7
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):572-81. doi: 10.1109/TPAMI.2004.1273927.
8
Face recognition system using multiple face model of hybrid Fourier feature under uncontrolled illumination variation.
IEEE Trans Image Process. 2011 Apr;20(4):1152-65. doi: 10.1109/TIP.2010.2083674. Epub 2010 Oct 4.
9
A hybrid color and frequency features method for face recognition.
IEEE Trans Image Process. 2008 Oct;17(10):1975-80. doi: 10.1109/TIP.2008.2002837.
10
Enhanced local texture feature sets for face recognition under difficult lighting conditions.
IEEE Trans Image Process. 2010 Jun;19(6):1635-50. doi: 10.1109/TIP.2010.2042645. Epub 2010 Feb 17.

引用本文的文献

1
Novel chromaticity similarity based color texture descriptor for digital pathology image analysis.
PLoS One. 2018 Nov 12;13(11):e0206996. doi: 10.1371/journal.pone.0206996. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验