Image and Video Systems Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
IEEE Trans Image Process. 2011 May;20(5):1425-34. doi: 10.1109/TIP.2010.2093906. Epub 2010 Nov 18.
This paper introduces the new color face recognition (FR) method that makes effective use of boosting learning as color-component feature selection framework. The proposed boosting color-component feature selection framework is designed for finding the best set of color-component features from various color spaces (or models), aiming to achieve the best FR performance for a given FR task. In addition, to facilitate the complementary effect of the selected color-component features for the purpose of color FR, they are combined using the proposed weighted feature fusion scheme. The effectiveness of our color FR method has been successfully evaluated on the following five public face databases (DBs): CMU-PIE, Color FERET, XM2VTSDB, SCface, and FRGC 2.0. Experimental results show that the results of the proposed method are impressively better than the results of other state-of-the-art color FR methods over different FR challenges including highly uncontrolled illumination, moderate pose variation, and small resolution face images.
本文介绍了一种新的彩色人脸识别 (FR) 方法,该方法有效利用了提升学习作为颜色分量特征选择框架。所提出的提升颜色分量特征选择框架旨在从各种颜色空间(或模型)中找到最佳的颜色分量特征集,旨在为给定的 FR 任务实现最佳的 FR 性能。此外,为了促进所选颜色分量特征的互补效果,我们使用提出的加权特征融合方案对其进行组合。我们的彩色 FR 方法的有效性已成功在以下五个公共人脸数据库(DB)上进行了评估:CMU-PIE、Color FERET、XM2VTSDB、SCface 和 FRGC 2.0。实验结果表明,在不同的 FR 挑战中,包括高度不受控制的光照、适度的姿势变化和小分辨率人脸图像,所提出的方法的结果明显优于其他最先进的彩色 FR 方法的结果。