Lopes Ana C, Nunes Urbano, Vaz Luis, Vaz Luís
Institute for Systems and Robotics, University of Coimbra, Polo II, 3030-290 Portugal.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:471-4. doi: 10.1109/IEMBS.2010.5626221.
This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.
本文提出了一种用于辅助移动机器人(AMR)的共享控制方法,该方法依赖于用户使用稀疏且离散的人机界面(HMI)来操控半自动电动轮椅的能力。该系统主要旨在帮助患有严重运动障碍而无法使用标准人机界面的用户。扫描界面和脑机接口(BCI)是可能的人机界面,其特点是稀疏地提供少量命令。这种共享控制方法旨在应用于辅助导航训练框架(ANTF),该框架用于训练用户在其有限运动能力所带来的限制条件下,以适当方式操控电动轮椅的能力。提出了一种基于用户特征的共享控制器。该控制器能够将本地运动规划层提供的信息与用户稀疏发出的命令进行共享。给出了所提出的共享控制方法的仿真结果。