Garde Ainara, Sornmo Leif, Jane Raimon, Giraldo Beatriz F
Dept. of ESAII, Universitat Politècnica de Catalunya (UPC), Institut de Bioenginyeria de Catalunya, (IBEC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN). c/. Pau Gargallo, 5, 08028, Barcelona, Spain.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2399-402. doi: 10.1109/IEMBS.2010.5627167.
In this study we propose the correntropy function as a discriminative measure for detecting nonlinearities in the respiratory pattern of chronic heart failure (CHF) patients with periodic or nonperiodic breathing pattern (PB or nPB, respectively). The complexity seems to be reduced in CHF patients with higher risk level. Correntropy reflects information on both, statistical distribution and temporal structure of the underlying dataset. It is a suitable measure due to its capability to preserve nonlinear information. The null hypothesis considered is that the analyzed data is generated by a Gaussian linear stochastic process. Correntropy is used in a statistical test to reject the null hypothesis through surrogate data methods. Various parameters, derived from the correntropy and correntropy spectral density (CSD) to characterize the respiratory pattern, presented no significant differences when extracted from the iteratively refined amplitude adjusted Fourier transform (IAAFT) surrogate data. The ratio between the powers in the modulation and respiratory frequency bands R was significantly different in nPB patients, but not in PB patients, which reflects a higher presence of nonlinearities in nPB patients than in PB patients.
在本研究中,我们提出将核相关熵函数作为一种判别度量,用于检测患有周期性或非周期性呼吸模式(分别为PB或nPB)的慢性心力衰竭(CHF)患者呼吸模式中的非线性特征。风险水平较高的CHF患者的复杂性似乎有所降低。核相关熵反映了基础数据集的统计分布和时间结构两方面的信息。由于其能够保留非线性信息,所以它是一种合适的度量。所考虑的零假设是,分析的数据由高斯线性随机过程生成。核相关熵用于统计检验,通过替代数据方法来拒绝零假设。从核相关熵和核相关熵谱密度(CSD)导出的用于表征呼吸模式的各种参数,从迭代细化幅度调整傅里叶变换(IAAFT)替代数据中提取时,没有呈现出显著差异。nPB患者调制频段与呼吸频段的功率比R显著不同,但PB患者并非如此,这反映出nPB患者比PB患者存在更多的非线性特征。