Suppr超能文献

颅内压记录分析:主成分分析(PCA)与基于信号平均的滤波方法及信号周期估计的比较

Analysis of intracranial pressure recordings: comparison of PCA and signal averaging based filtering methods and signal period estimation.

作者信息

Calisto A, Galeano M, Bramanti A, Angileri F, Campobello G, Serrano S, Azzerboni B

机构信息

Department of Matter Physics and Electronic Engineering, University of Messina, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3638-41. doi: 10.1109/IEMBS.2010.5627420.

Abstract

Intracranial pressure monitoring is a common used approach for neuro-intensive care in cases of brain damages and injuries or to investigate chronic pathologies. Several types of noises and artifacts normally contaminate ICP recordings. They can be sorted in 2 classes, i.e. high-frequency noises (due to measurement and amplifier devices or electricity supply presence) and low-frequency noises (due to unwanted patient's movement, speeches, coughing during the recording and quantization noise). Thus, deep investigations on ICP components aimed to extract features from ICP signal, require a denoised signal. For this reason the authors have addressed a study upon the most common filtering techniques. On each ICP recording we have performed 4 configurations of filters, which involve the use of a FIR filter together with Signal Averaging filters or PCA based filters. Next step is period estimation for absolute minima detection. The results obtained by the algorithm for automatic ICP marking are compared to those ones obtained from manual marking (peaks are manually identified and annotated by a brain surgeon). The procedure is repeated varying the filters sliding window size to minimize the mean square error. The results show how the configurations FIR filter + Signal averaging provides smaller mean squared error (MSE=118.84[sample(2)]) than the others 3 configurations FIR filter + PCA filter based (MSE=135.29-147.15[sample(2)]).

摘要

颅内压监测是脑损伤和创伤病例神经重症监护中常用的方法,或用于研究慢性疾病。几种类型的噪声和伪迹通常会干扰颅内压记录。它们可分为两类,即高频噪声(由于测量和放大设备或电源存在)和低频噪声(由于记录期间患者不必要的移动、讲话、咳嗽以及量化噪声)。因此,旨在从颅内压信号中提取特征的对颅内压成分的深入研究需要一个去噪后的信号。出于这个原因,作者针对最常见的滤波技术进行了一项研究。在每个颅内压记录上,我们进行了4种滤波器配置,其中包括使用FIR滤波器以及信号平均滤波器或基于主成分分析的滤波器。下一步是进行周期估计以检测绝对最小值。将自动颅内压标记算法得到的结果与手动标记得到的结果进行比较(由脑外科医生手动识别并标注峰值)。通过改变滤波器滑动窗口大小重复该过程,以最小化均方误差。结果表明,FIR滤波器+信号平均配置的均方误差(MSE = 118.84[样本(2)])比其他3种基于FIR滤波器+主成分分析滤波器的配置(MSE = 135.29 - 147.15[样本(2)])更小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验