Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
J Biol Chem. 2011 Feb 4;286(5):3777-88. doi: 10.1074/jbc.M110.155234. Epub 2010 Nov 22.
Acid sphingomyelinase (aSMase) catalyzes the hydrolysis of sphingomyelin (SM) to form the bioactive lipid ceramide (Cer). Notably, aSMase exists in two forms: a zinc (Zn(2+))-independent lysosomal aSMase (L-SMase) and a Zn(2+)-dependent secreted aSMase (S-SMase) that arise from alternative trafficking of a single protein precursor. Despite extensive investigation into the maturation and trafficking of aSMase, the exact identity of mature L-SMase has remained unclear. Here, we describe a novel mechanism of aSMase maturation involving C-terminal proteolytic processing within, or in close proximity to, endolysosomes. Using two different C-terminal-tagged constructs of aSMase (V5, DsRed), we demonstrate that aSMase is processed from a 75-kDa, Zn(2+)-activated proenzyme to a mature 65 kDa, Zn(2+)-independent L-SMase. L-SMase is recognized by a polyclonal Ab to aSMase, but not by anti-V5 or anti-DsRed antibodies, suggesting that the C-terminal tag is lost during maturation. Furthermore, indirect immunofluorescence staining demonstrated that mature L-SMase colocalized with the lysosomal marker LAMP1, whereas V5-aSMase localized to the Golgi secretory pathway. Moreover, V5-aSMase possessed Zn(2+)-dependent activity suggesting it may represent the common protein precursor of S-SMase and L-SMase. Importantly, the 65-kDa L-SMase, but not V5-aSMase, was sensitive to the lysosomotropic inhibitor desipramine, co-fractionated with lysosomes, and migrated at the same M(r) as partially purified human aSMase. Finally, three aSMase mutants containing C-terminal Niemann-Pick mutations (R600H, R600P, ΔR608) exhibited defective proteolytic maturation. Taken together, these results demonstrate that mature L-SMase arises from C-terminal proteolytic processing of pro-aSMase and suggest that impaired C-terminal proteolysis may lead to severe defects in L-SMase function.
酸性鞘磷脂酶(aSMase)催化鞘磷脂(SM)水解生成生物活性脂质神经酰胺(Cer)。值得注意的是,aSMase 存在两种形式:一种是锌(Zn(2+))非依赖性溶酶体 aSMase(L-SMase),另一种是 Zn(2+))依赖性分泌型 aSMase(S-SMase),它们是由单一蛋白前体的不同运输途径产生的。尽管对 aSMase 的成熟和运输进行了广泛的研究,但成熟的 L-SMase 的确切身份仍不清楚。在这里,我们描述了一种新的 aSMase 成熟机制,涉及到内溶酶体或其附近的 C 端蛋白水解加工。使用两种不同的 C 端标记的 aSMase 构建体(V5、DsRed),我们证明 aSMase 是从 75kDa、Zn(2+))激活的酶原加工成熟为 65kDa、Zn(2+))非依赖性 L-SMase。L-SMase 被抗 aSMase 的多克隆抗体识别,但不被抗 V5 或抗 DsRed 抗体识别,这表明 C 端标签在成熟过程中丢失。此外,间接免疫荧光染色表明,成熟的 L-SMase 与溶酶体标记物 LAMP1 共定位,而 V5-aSMase 定位于高尔基体分泌途径。此外,V5-aSMase 具有 Zn(2+))依赖性活性,这表明它可能代表 S-SMase 和 L-SMase 的共同蛋白前体。重要的是,65kDa 的 L-SMase 而不是 V5-aSMase 对溶酶体亲和性抑制剂去甲丙咪嗪敏感,与溶酶体共分馏,并以与部分纯化的人 aSMase 相同的 M(r)迁移。最后,三个含有 C 端尼曼-皮克突变(R600H、R600P、ΔR608)的 aSMase 突变体表现出蛋白水解成熟缺陷。综上所述,这些结果表明成熟的 L-SMase 是由前体 aSMase 的 C 端蛋白水解加工产生的,并表明 C 端蛋白水解缺陷可能导致 L-SMase 功能严重缺陷。