Suppr超能文献

Arachidonic acid causes postischemic dysfunction in control but not diabetic hearts.

作者信息

Pieper G M

机构信息

Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226.

出版信息

Am J Physiol. 1990 Apr;258(4 Pt 2):H923-30. doi: 10.1152/ajpheart.1990.258.4.H923.

Abstract

Isovolumically perfused control and chronic diabetic rat hearts were subjected to 20 min of global ischemia plus 30 min of reperfusion at preischemic flow rates. Recoveries of contractile function during reperfusion were similar in both groups. Addition of arachidonic acid produced profound postischemic dysfunction in nondiabetic hearts (isovolumic minute work = 19 +/- 8 vs. 86 +/- 10% of preischemic levels after 30 min), whereas arachidonic acid had no detrimental effect in diabetic hearts. Arachidonic acid also augmented endogenous prostacyclin release in control hearts (untreated 2.28 +/- 0.23 ng/ml; arachidonic acid 4.07 +/- 0.22 ng/ml) but failed to alter postischemic prostacyclin release in diabetic hearts. The arachidonic acid-induced postischemic dysfunction was significantly attenuated by coadministration of the oxygen free radical scavengers, superoxide dismutase plus catalase, but not by indomethacin. Thus arachidonic acid-induced dysfunction in normal hearts appears to be related, in part, to free radical production. The intrinsic capacity of the heart to synthesize prostacyclin as a result of ischemia and reperfusion does not appear to be impaired by diabetes. In contrast, the arachidonic acid-induced increase in prostacyclin following ischemia is blunted in the diabetic heart. Although chronic diabetic hearts showed increased tolerance to arachidonic acid-induced dysfunction during reperfusion, a defect in prostacyclin stimulation may place the diabetic at greater risk of complications of ischemic reperfusion in vivo by reducing the capacity to adequately respond to the aggregatory and vasospastic actions of increased circulating thromboxane consequent to myocardial ischemia and reperfusion.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验