Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute of Mathematical Sciences New York University, New York, NY 10003, USA.
Neural Comput. 2011 Feb;23(2):374-420. doi: 10.1162/NECO_a_00076. Epub 2010 Nov 24.
Selection of an optimal estimator typically relies on either supervised training samples (pairs of measurements and their associated true values) or a prior probability model for the true values. Here, we consider the problem of obtaining a least squares estimator given a measurement process with known statistics (i.e., a likelihood function) and a set of unsupervised measurements, each arising from a corresponding true value drawn randomly from an unknown distribution. We develop a general expression for a nonparametric empirical Bayes least squares (NEBLS) estimator, which expresses the optimal least squares estimator in terms of the measurement density, with no explicit reference to the unknown (prior) density. We study the conditions under which such estimators exist and derive specific forms for a variety of different measurement processes. We further show that each of these NEBLS estimators may be used to express the mean squared estimation error as an expectation over the measurement density alone, thus generalizing Stein's unbiased risk estimator (SURE), which provides such an expression for the additive gaussian noise case. This error expression may then be optimized over noisy measurement samples, in the absence of supervised training data, yielding a generalized SURE-optimized parametric least squares (SURE2PLS) estimator. In the special case of a linear parameterization (i.e., a sum of nonlinear kernel functions), the objective function is quadratic, and we derive an incremental form for learning this estimator from data. We also show that combining the NEBLS form with its corresponding generalized SURE expression produces a generalization of the score-matching procedure for parametric density estimation. Finally, we have implemented several examples of such estimators, and we show that their performance is comparable to their optimal Bayesian or supervised regression counterparts for moderate to large amounts of data.
选择最佳估计器通常依赖于监督训练样本(测量值及其相关真实值对)或真实值的先验概率模型。在这里,我们考虑在给定具有已知统计信息(即似然函数)的测量过程和一组无监督测量的情况下获得最小二乘估计器的问题,每个测量值都是从未知分布中随机抽取的相应真实值得出的。我们开发了一种非参数经验贝叶斯最小二乘(NEBLS)估计器的通用表达式,该表达式以测量密度为基础表示最佳最小二乘估计器,而无需显式引用未知(先验)密度。我们研究了存在这种估计器的条件,并为各种不同的测量过程推导出了具体形式。我们进一步表明,这些 NEBLS 估计器中的每一个都可以用于将均方估计误差表示为仅对测量密度的期望,从而推广了 Stein 的无偏风险估计器(SURE),后者为加性高斯噪声情况提供了这样的表达式。然后,在没有监督训练数据的情况下,可以在噪声测量样本上优化该误差表达式,从而产生广义 SURE 优化参数最小二乘(SURE2PLS)估计器。在线性参数化的特殊情况下(即非线性核函数的和),目标函数是二次的,我们从数据中推导出学习此估计器的增量形式。我们还表明,将 NEBLS 形式与其对应的广义 SURE 表达式结合使用,会产生参数密度估计的评分匹配过程的推广。最后,我们已经实现了这些估计器的几个示例,并表明它们的性能与数据量适中或较大的最佳贝叶斯或监督回归对应物相当。