Department of Biomedical Engineering, and Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
J Neurosci. 2010 Nov 24;30(47):15904-14. doi: 10.1523/JNEUROSCI.4050-10.2010.
Short-term plasticity (STP) represents a key neuronal mechanism of information processing. In excitatory hippocampal synapses, STP serves as a high-pass filter optimized for the transmission of information-carrying place-field discharges. This STP filter enables synapses to perform a highly nonlinear, switch-like operation permitting the passage and amplification of signals with place-field-like characteristics. Because of the complexity of interactions among STP processes, the synaptic mechanisms underlying this filtering paradigm remain poorly understood. Here, we describe a simple mechanistic model of STP, derived in large part from basic principles of synaptic function, that reproduces this highly nonlinear synaptic behavior. The model, formulated in terms of release probability, considers the interactions between calcium-dependent forms of presynaptic enhancement and their impact on vesicle pool dynamics, which is described using a two-pool model of vesicle recruitment. By considering the interdependency between release probability and various forms of STP, the model attempts to provide a realistic coupling among major presynaptic processes. The model parameters are first determined using synaptic dynamics during constant-frequency stimulation. The model then accurately reproduces all major characteristics of the synaptic filtering paradigm during natural stimulus patterns without free parameters. An elimination approach is then used to identify the contribution of each STP component to synaptic dynamics. Based on this analysis, the model predicts strong calcium dependence of synaptic filtering properties, which is verified experimentally in rat hippocampal slices. This simple model may thus offer a useful framework to further investigate the role of STP in neural computations.
短期可塑性 (STP) 代表了信息处理的关键神经元机制。在兴奋性海马突触中,STP 作为一种高通滤波器,针对传递携带位置场放电的信息进行了优化。这种 STP 滤波器使突触能够进行高度非线性、开关式操作,允许具有位置场特征的信号通过和放大。由于 STP 过程之间的相互作用复杂,这种滤波范例的突触机制仍未得到很好的理解。在这里,我们描述了一个简单的 STP 机制模型,该模型主要源自突触功能的基本原理,可再现这种高度非线性的突触行为。该模型以释放概率为表述形式,考虑了钙依赖性的突触前增强形式之间的相互作用及其对囊泡库动力学的影响,囊泡库动力学使用囊泡招募的两池模型进行描述。通过考虑释放概率与各种形式的 STP 之间的相互依存关系,该模型试图在主要的突触前过程之间提供一种现实的耦合。首先使用恒定频率刺激期间的突触动力学来确定模型参数。然后,该模型无需自由参数即可准确再现自然刺激模式下的突触滤波范例的所有主要特征。然后使用消除方法来确定每个 STP 成分对突触动力学的贡献。基于此分析,该模型预测了突触滤波特性的强烈钙依赖性,这在大鼠海马切片中的实验中得到了验证。因此,这个简单的模型可能为进一步研究 STP 在神经计算中的作用提供了一个有用的框架。