Suppr超能文献

利用功能数据分析检测城市地区气体排放中的异常值。

Detection of outliers in gas emissions from urban areas using functional data analysis.

机构信息

Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain.

出版信息

J Hazard Mater. 2011 Feb 15;186(1):144-9. doi: 10.1016/j.jhazmat.2010.10.091. Epub 2010 Nov 2.

Abstract

In this work a solution for the problem of the detection of outliers in gas emissions in urban areas that uses functional data analysis is described. Different methodologies for outlier identification have been applied in air pollution studies, with gas emissions considered as vectors whose components are gas concentration values for each observation made. In our methodology we consider gas emissions over time as curves, with outliers obtained by a comparison of curves instead of vectors. The methodology, which is based on the concept of functional depth, was applied to the detection of outliers in gas omissions in the city of Oviedo and results were compared with those obtained using a conventional method based on a comparison of vectors. Finally, the advantages of the functional method are reported.

摘要

本工作描述了一种使用函数数据分析来检测城市地区气体排放异常值的解决方案。在空气污染研究中,已经应用了不同的异常值识别方法,将气体排放视为向量,其分量为每个观测值的气体浓度值。在我们的方法中,我们将随时间变化的气体排放视为曲线,通过比较曲线而不是向量来获得异常值。该方法基于函数深度的概念,应用于检测奥维多市的气体排放异常值,并将结果与基于向量比较的传统方法的结果进行了比较。最后,报告了函数方法的优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验