Suppr超能文献

火鸡跟腱的力学性能。

Mechanical properties of the gastrocnemius aponeurosis in wild turkeys.

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.

出版信息

Integr Comp Biol. 2009 Jul;49(1):51-8. doi: 10.1093/icb/icp006. Epub 2009 Apr 8.

Abstract

In many muscles, the tendinous structures include both an extramuscular free tendon as well as a sheet-like aponeurosis. In both free tendons and aponeuroses the collagen fascicles are oriented primarily longitudinally, along the muscle's line of action. It is generally assumed that this axis represents the direction of loading for these structures. This assumption is well founded for free tendons, but aponeuroses undergo a more complex loading regime. Unlike free tendons, aponeuroses surround a substantial portion of the muscle belly and are therefore loaded both parallel (longitudinal) and perpendicular (transverse) to a muscle's line of action when contracting muscles bulge to maintain a constant volume. Given this biaxial loading pattern, it is critical to understand the mechanical properties of aponeuroses in both the longitudinal and transverse directions. In this study, we use uniaxial testing of isolated tissue samples from the aponeurosis of the lateral gastrocnemius of wild turkeys to determine mechanical properties of samples loaded longitudinally (along the muscle's line of action) and transversely (orthogonal to the line of action). We find that the aponeurosis has a significantly higher Young's modulus in the longitudinal than in the transverse direction. Our results also show that aponeuroses can behave as efficient springs in both the longitudinal and transverse directions, losing little energy to hysteresis. We also test the failure properties of aponeuroses to quantify the likely safety factor with which these structures operate during muscular force production. These results provide an essential foundation for understanding the mechanical function of aponeuroses as biaxially loaded biological springs.

摘要

在许多肌肉中,腱性结构既包括肌外的游离肌腱,也包括片状的腱膜。游离肌腱和腱膜中的胶原纤维束都主要沿着肌肉的作用线呈纵向排列。通常认为,这个轴代表了这些结构的受力方向。对于游离肌腱来说,这个假设是有充分依据的,但腱膜的受力情况更为复杂。与游离肌腱不同,腱膜环绕着肌肉腹部的很大一部分,因此当肌肉收缩使肌肉膨出以保持恒定体积时,腱膜会受到平行(纵向)和垂直(横向)于肌肉作用线的双重加载。鉴于这种双轴加载模式,了解腱膜在纵向和横向两个方向上的力学性能至关重要。在这项研究中,我们使用从野生火鸡的外侧跟腱腱膜中分离出的组织样本进行单轴测试,以确定沿肌肉作用线加载(纵向)和垂直于作用线加载(横向)时样本的力学性能。我们发现腱膜在纵向方向上的杨氏模量明显高于横向方向。我们的结果还表明,腱膜在纵向和横向两个方向上都可以作为高效的弹簧,几乎不会因滞后而损失能量。我们还测试了腱膜的失效特性,以量化这些结构在肌肉力产生过程中的可能安全系数。这些结果为理解腱膜作为双轴加载生物弹簧的力学功能提供了重要基础。

相似文献

1
Mechanical properties of the gastrocnemius aponeurosis in wild turkeys.
Integr Comp Biol. 2009 Jul;49(1):51-8. doi: 10.1093/icb/icp006. Epub 2009 Apr 8.
2
Biaxial strain and variable stiffness in aponeuroses.
J Physiol. 2009 Sep 1;587(Pt 17):4309-18. doi: 10.1113/jphysiol.2009.173690. Epub 2009 Jul 13.
6
Determinants of aponeurosis shape change during muscle contraction.
J Biomech. 2016 Jun 14;49(9):1812-1817. doi: 10.1016/j.jbiomech.2016.04.022. Epub 2016 Apr 26.
7
The non-intuitive, in-vivo behavior of aponeuroses in a unipennate muscle.
J Biomech. 2023 Jan;147:111430. doi: 10.1016/j.jbiomech.2022.111430. Epub 2022 Dec 31.
9
Anisotropic and viscoelastic tensile mechanical properties of aponeurosis: Experimentation, modeling, and tissue microstructure.
J Mech Behav Biomed Mater. 2020 Oct;110:103889. doi: 10.1016/j.jmbbm.2020.103889. Epub 2020 Jun 7.
10
The problem with skeletal muscle series elasticity.
BMC Biomed Eng. 2019 Dec 3;1:28. doi: 10.1186/s42490-019-0031-y. eCollection 2019.

引用本文的文献

1
The Structure, Function, and Adaptation of Lower-Limb Aponeuroses: Implications for Myo-Aponeurotic Injury.
Sports Med Open. 2024 Dec 24;10(1):133. doi: 10.1186/s40798-024-00789-3.
2
Evidence for multi-scale power amplification in skeletal muscle.
J Exp Biol. 2023 Nov 1;226(21). doi: 10.1242/jeb.246070. Epub 2023 Nov 3.
3
Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
J Biomech. 2023 May;153:111585. doi: 10.1016/j.jbiomech.2023.111585. Epub 2023 Apr 13.
4
A 3D model of the soleus reveals effects of aponeuroses morphology and material properties on complex muscle fascicle behavior.
J Biomech. 2022 Jan;130:110877. doi: 10.1016/j.jbiomech.2021.110877. Epub 2021 Nov 27.
5
Individualization of exosuit assistance based on measured muscle dynamics during versatile walking.
Sci Robot. 2021 Nov 10;6(60):eabj1362. doi: 10.1126/scirobotics.abj1362.
6
The Energy of Muscle Contraction. III. Kinetic Energy During Cyclic Contractions.
Front Physiol. 2021 Apr 7;12:628819. doi: 10.3389/fphys.2021.628819. eCollection 2021.
7
Tissue Engineering for the Insertions of Tendons and Ligaments: An Overview of Electrospun Biomaterials and Structures.
Front Bioeng Biotechnol. 2021 Mar 2;9:645544. doi: 10.3389/fbioe.2021.645544. eCollection 2021.
8
The Energy of Muscle Contraction. I. Tissue Force and Deformation During Fixed-End Contractions.
Front Physiol. 2020 Aug 31;11:813. doi: 10.3389/fphys.2020.00813. eCollection 2020.
9
Differential Regional Stiffening of Sclera by Collagen Cross-linking.
Curr Eye Res. 2020 Jun;45(6):718-725. doi: 10.1080/02713683.2019.1694157. Epub 2019 Nov 21.

本文引用的文献

1
Variable gearing in pennate muscles.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50. doi: 10.1073/pnas.0709212105. Epub 2008 Jan 29.
2
Lateral force transmission between human tendon fascicles.
Matrix Biol. 2008 Mar;27(2):86-95. doi: 10.1016/j.matbio.2007.09.001. Epub 2007 Sep 20.
3
Running over rough terrain reveals limb control for intrinsic stability.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15681-6. doi: 10.1073/pnas.0601473103. Epub 2006 Oct 10.
4
Biomechanical consequences of scaling.
J Exp Biol. 2005 May;208(Pt 9):1665-76. doi: 10.1242/jeb.01520.
6
STRUCTURE AND FUNCTION OF MAMMALIAN TENDON.
Biol Rev Camb Philos Soc. 1965 Aug;40:392-421. doi: 10.1111/j.1469-185x.1965.tb00808.x.
7
Functional morphology of the supraspinatus tendon.
J Orthop Res. 2002 Sep;20(5):920-6. doi: 10.1016/S0736-0266(02)00023-2.
9
Mechanical properties of the human achilles tendon.
Clin Biomech (Bristol). 2001 Mar;16(3):245-51. doi: 10.1016/s0268-0033(00)00089-9.
10
Load-displacement properties of the human triceps surae aponeurosis in vivo.
J Physiol. 2001 Feb 15;531(Pt 1):277-88. doi: 10.1111/j.1469-7793.2001.0277j.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验