Suppr超能文献

一种使用 PyrosequencingTM 鉴定混合 DNA 样本中从头 SNP 的简单方法。

A simple method using PyrosequencingTM to identify de novo SNPs in pooled DNA samples.

机构信息

Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan.

出版信息

Nucleic Acids Res. 2011 Mar;39(5):e28. doi: 10.1093/nar/gkq1249. Epub 2010 Dec 3.

Abstract

A practical way to reduce the cost of surveying single-nucleotide polymorphism (SNP) in a large number of individuals is to measure the allele frequencies in pooled DNA samples. Pyrosequencing(TM) has been frequently used for this application because signals generated by this approach are proportional to the amount of DNA templates. The Pyrosequencing(TM) pyrogram is determined by the dispensing order of dNTPs, which is usually designed based on the known SNPs to avoid asynchronistic extensions of heterozygous sequences. Therefore, utilizing the pyrogram signals to identify de novo SNPs in DNA pools has never been undertook. Here, in this study we developed an algorithm to address this issue. With the sequence and pyrogram of the wild-type allele known in advance, we could use the pyrogram obtained from the pooled DNA sample to predict the sequence of the unknown mutant allele (de novo SNP) and estimate its allele frequency. Both computational simulation and experimental Pyrosequencing(TM) test results suggested that our method performs well. The web interface of our method is available at http://life.nctu.edu.tw/∼yslin/PSM/.

摘要

在大量个体中降低单核苷酸多态性(SNP)检测成本的一种实用方法是测量混合 DNA 样本中的等位基因频率。焦磷酸测序(TM)经常用于这种应用,因为这种方法产生的信号与 DNA 模板的数量成正比。焦磷酸测序(TM)的焦谱图由 dNTP 的分配顺序决定,通常根据已知的 SNPs 进行设计,以避免异源序列的异步延伸。因此,从未利用焦谱图信号来识别 DNA 池中的新出现的 SNPs。在这里,在本研究中我们开发了一种算法来解决这个问题。通过预先知道野生型等位基因的序列和焦谱图,我们可以使用从混合 DNA 样本中获得的焦谱图来预测未知突变等位基因(新出现的 SNP)的序列,并估计其等位基因频率。计算模拟和实验焦磷酸测序(TM)测试结果均表明我们的方法表现良好。我们方法的网络界面可在 http://life.nctu.edu.tw/∼yslin/PSM/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf12/3061071/8974e8927668/gkq1249f1.jpg

相似文献

1
A simple method using PyrosequencingTM to identify de novo SNPs in pooled DNA samples.
Nucleic Acids Res. 2011 Mar;39(5):e28. doi: 10.1093/nar/gkq1249. Epub 2010 Dec 3.
2
Pyrosequencing-based SNP allele frequency estimation in DNA pools.
Hum Mutat. 2004 Jan;23(1):92-7. doi: 10.1002/humu.10292.
3
Efficient identification of SNPs in pooled DNA samples using a dual mononucleotide addition-based sequencing method.
Mol Genet Genomics. 2017 Oct;292(5):1069-1081. doi: 10.1007/s00438-017-1332-2. Epub 2017 Jun 13.
4
Estimation of single nucleotide polymorphism allele frequency in DNA pools by using Pyrosequencing.
Hum Genet. 2002 May;110(5):395-401. doi: 10.1007/s00439-002-0722-6. Epub 2002 Apr 9.
5
Assessing allele frequencies of single nucleotide polymorphisms in DNA pools by pyrosequencing technology.
Biotechniques. 2002 May;32(5):1144-6, 1148, 1150 passim. doi: 10.2144/02325dd04.
7
Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing.
Genome Res. 2000 Aug;10(8):1249-58. doi: 10.1101/gr.10.8.1249.
8
PoooL: an efficient method for estimating haplotype frequencies from large DNA pools.
Bioinformatics. 2008 Sep 1;24(17):1942-8. doi: 10.1093/bioinformatics/btn324. Epub 2008 Jun 23.
9
PDA: Pooled DNA analyzer.
BMC Bioinformatics. 2006 Apr 28;7:233. doi: 10.1186/1471-2105-7-233.
10
SNP allele frequency estimation in DNA pools and variance components analysis.
Biotechniques. 2004 May;36(5):840-5. doi: 10.2144/04365RR01.

引用本文的文献

1
Rhizodegradation of PAHs differentially altered by C3 and C4 plants.
Sci Rep. 2020 Sep 30;10(1):16109. doi: 10.1038/s41598-020-72844-4.
2
Efficient identification of SNPs in pooled DNA samples using a dual mononucleotide addition-based sequencing method.
Mol Genet Genomics. 2017 Oct;292(5):1069-1081. doi: 10.1007/s00438-017-1332-2. Epub 2017 Jun 13.

本文引用的文献

1
Titration-free massively parallel pyrosequencing using trace amounts of starting material.
Nucleic Acids Res. 2010 Jul;38(13):e137. doi: 10.1093/nar/gkq332. Epub 2010 Apr 30.
2
Sequencing technologies - the next generation.
Nat Rev Genet. 2010 Jan;11(1):31-46. doi: 10.1038/nrg2626. Epub 2009 Dec 8.
3
Flow cytometry for enrichment and titration in massively parallel DNA sequencing.
Nucleic Acids Res. 2009 May;37(8):e63. doi: 10.1093/nar/gkp188. Epub 2009 Mar 20.
4
Metagenomic pyrosequencing and microbial identification.
Clin Chem. 2009 May;55(5):856-66. doi: 10.1373/clinchem.2008.107565. Epub 2009 Mar 5.
5
High throughput automated allele frequency estimation by pyrosequencing.
PLoS One. 2008 Jul 16;3(7):e2693. doi: 10.1371/journal.pone.0002693.
6
Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast.
Mol Biol Evol. 2008 Sep;25(9):1863-75. doi: 10.1093/molbev/msn138. Epub 2008 Jun 23.
7
SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.
Nat Methods. 2008 Mar;5(3):247-52. doi: 10.1038/nmeth.1185. Epub 2008 Feb 24.
8
The impact of next-generation sequencing technology on genetics.
Trends Genet. 2008 Mar;24(3):133-41. doi: 10.1016/j.tig.2007.12.007. Epub 2008 Feb 11.
9
A second generation human haplotype map of over 3.1 million SNPs.
Nature. 2007 Oct 18;449(7164):851-61. doi: 10.1038/nature06258.
10
Short pyrosequencing reads suffice for accurate microbial community analysis.
Nucleic Acids Res. 2007;35(18):e120. doi: 10.1093/nar/gkm541. Epub 2007 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验