Suppr超能文献

致密氧化锆和氧化锆-二氧化硅陶瓷纳米纤维的制备与表征

Fabrication and characterization of dense zirconia and zirconia-silica ceramic nanofibers.

作者信息

Xu Xiaoming, Guo Guangqing, Fan Yuwei

机构信息

Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Science Center, School of Dentistry, Box 137, 1100 Florida Avenue, New Orleans, LA 70119, USA.

出版信息

J Nanosci Nanotechnol. 2010 Sep;10(9):5672-9. doi: 10.1166/jnn.2010.2441.

Abstract

The objective of this study was to prepare dense zirconia-yttria (ZY), zirconia-silica (ZS) and zirconia-yttria-silica (ZYS) nanofibers as reinforcing elements for dental composites. Zirconium (IV) propoxide, yttrium nitrate hexahydrate, and tetraethyl orthosilicate (TEOS) were used as precursors for the preparation of zirconia, yttria, and silica sols. A small amount (1-1.5 wt%) of polyethylene oxide (PEO) was used as a carry polymer. The sols were preheated at 70 degrees C before electrospinning and their viscosity was measured with a viscometer at different heating time. The gel point was determined by viscosity-time (eta-t) curve. The ZY, ZS and ZYS gel nanofibers were prepared using a special reactive electrospinning device under the conditions near the gel point. The as-prepared gel nanofibers had diameters between 200 and 400 nm. Dense (nonporous) ceramic nanofibers of zirconia-yttria (96/4), zirconia-silica (80/20) and zirconia-yttria-silica (76.8/3.2/20) with diameter of 100-300 nm were obtained by subsequent calcinations at different temperatures. The gel and ceramic nanofibers obtained were characterized by scanning electron microscope (SEM), high-resolution field-emission scanning electron microscope (FE-SEM), thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), Fourier transform infrared spectrometer (FT-IR), and X-ray diffraction (XRD). SEM micrograph revealed that ceramic ZY nanofibers had grained structure, while ceramic ZS and ZYS nanofibers had smooth surfaces, both showing no visible porosity under FE-SEM. Complete removal of the polymer PEO was confirmed by TGA/DSC and FT-IR. The formation of tetragonal phase of zirconia and amorphous silica was proved by XRD. In conclusion, dense zirconia-based ceramic nanofibers can be fabricated using the new reactive sol-gel electrospinning technology with minimum organic polymer additives.

摘要

本研究的目的是制备致密的氧化锆 - 氧化钇(ZY)、氧化锆 - 二氧化硅(ZS)和氧化锆 - 氧化钇 - 二氧化硅(ZYS)纳米纤维,作为牙科复合材料的增强元素。丙醇锆(IV)、六水合硝酸钇和正硅酸四乙酯(TEOS)用作制备氧化锆、氧化钇和二氧化硅溶胶的前驱体。少量(1 - 1.5 wt%)的聚环氧乙烷(PEO)用作载体聚合物。溶胶在静电纺丝前于70℃预热,并用粘度计在不同加热时间测量其粘度。通过粘度 - 时间(η - t)曲线确定凝胶点。ZY、ZS和ZYS凝胶纳米纤维在接近凝胶点的条件下使用特殊的反应性静电纺丝装置制备。所制备的凝胶纳米纤维直径在200至400nm之间。通过在不同温度下的后续煅烧,获得了直径为100 - 300nm的致密(无孔)氧化锆 - 氧化钇(96/4)、氧化锆 - 二氧化硅(80/20)和氧化锆 - 氧化钇 - 二氧化硅(76.8/3.2/20)陶瓷纳米纤维。通过扫描电子显微镜(SEM)、高分辨率场发射扫描电子显微镜(FE - SEM)、热重分析仪(TGA)、差示扫描量热仪(DSC)、傅里叶变换红外光谱仪(FT - IR)和X射线衍射(XRD)对所得凝胶和陶瓷纳米纤维进行表征。SEM显微照片显示,陶瓷ZY纳米纤维具有粒状结构,而陶瓷ZS和ZYS纳米纤维表面光滑,在FE - SEM下均未显示可见孔隙。TGA/DSC和FT - IR证实聚合物PEO被完全去除。XRD证明了氧化锆四方相和无定形二氧化硅的形成。总之,使用新型反应性溶胶 - 凝胶静电纺丝技术,添加最少的有机聚合物添加剂,可制备致密的氧化锆基陶瓷纳米纤维。

相似文献

1
Fabrication and characterization of dense zirconia and zirconia-silica ceramic nanofibers.
J Nanosci Nanotechnol. 2010 Sep;10(9):5672-9. doi: 10.1166/jnn.2010.2441.
2
Novel dental composites reinforced with zirconia-silica ceramic nanofibers.
Dent Mater. 2012 Apr;28(4):360-8. doi: 10.1016/j.dental.2011.11.006. Epub 2011 Dec 6.
4
Fabrication of NiO/zirconium oxide nanofibers by electrospinning.
Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:369-73. doi: 10.1016/j.msec.2014.09.029. Epub 2014 Sep 16.
5
Adhesion mechanisms at the interface between Y-TZP and veneering ceramic with and without modifier.
J Dent. 2014 Nov;42(11):1473-9. doi: 10.1016/j.jdent.2014.07.019. Epub 2014 Aug 7.
6
Fabrication and investigation of silica nanofibers via electrospinning.
Mater Sci Eng C Mater Biol Appl. 2018 Oct 1;91:502-511. doi: 10.1016/j.msec.2018.05.068. Epub 2018 May 22.
7
Effect of hydrothermal degradation on three types of zirconias for dental application.
J Prosthet Dent. 2014 Dec;112(6):1377-84. doi: 10.1016/j.prosdent.2014.07.015. Epub 2014 Sep 30.
9
Aging of 3Y-TZP dental zirconia and yttrium depletion.
Dent Mater. 2017 Nov;33(11):e385-e392. doi: 10.1016/j.dental.2017.07.011. Epub 2017 Aug 5.
10
Methacrylate bonding to zirconia by in situ silica nanoparticle surface deposition.
Dent Mater. 2015 Jan;31(1):68-76. doi: 10.1016/j.dental.2014.11.011. Epub 2014 Dec 9.

引用本文的文献

1
Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration.
Biomed Res Int. 2014;2014:542958. doi: 10.1155/2014/542958. Epub 2014 May 27.
2
Novel dental composites reinforced with zirconia-silica ceramic nanofibers.
Dent Mater. 2012 Apr;28(4):360-8. doi: 10.1016/j.dental.2011.11.006. Epub 2011 Dec 6.

本文引用的文献

1
A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report.
J Prosthet Dent. 2008 Nov;100(5):348-52. doi: 10.1016/S0022-3913(08)60235-8.
2
Fiber-reinforced dental composites in beam testing.
Dent Mater. 2008 Nov;24(11):1435-43. doi: 10.1016/j.dental.2008.06.006. Epub 2008 Aug 9.
3
Preparation and characterization of electrospun SiO2 nanofibers.
J Nanosci Nanotechnol. 2008 Mar;8(3):1528-36.
4
Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate.
Dent Mater. 2008 Feb;24(2):235-43. doi: 10.1016/j.dental.2007.05.002. Epub 2007 Jun 18.
5
Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix.
Dent Mater. 2007 Nov;23(11):1356-62. doi: 10.1016/j.dental.2006.11.017. Epub 2007 Jan 3.
8
Effects of different whiskers on the reinforcement of dental resin composites.
Dent Mater. 2003 Jul;19(5):359-67. doi: 10.1016/s0109-5641(02)00078-7.
9
Fracture toughness of packable and conventional composite materials.
J Prosthet Dent. 2002 Sep;88(3):307-13. doi: 10.1067/mpr.2002.128069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验