GIPSA-LAB, University of Grenoble, F-38402 Grenoble Cedex, France.
IEEE Trans Biomed Eng. 2011 Apr;58(4):884-93. doi: 10.1109/TBME.2010.2099227. Epub 2010 Dec 13.
In this paper, we study temporal couplings between interictal events of spatially remote regions in order to localize the leading epileptic regions from intracerebral EEG (iEEG). We aim to assess whether quantitative epileptic graph analysis during interictal period may be helpful to predict the seizure onset zone of ictal iEEG. Using wavelet transform, cross-correlation coefficient, and multiple hypothesis test, we propose a differential connectivity graph (DCG) to represent the connections that change significantly between epileptic and nonepileptic states as defined by the interictal events. Postprocessings based on mutual information and multiobjective optimization are proposed to localize the leading epileptic regions through DCG. The suggested approach is applied on iEEG recordings of five patients suffering from focal epilepsy. Quantitative comparisons of the proposed epileptic regions within ictal onset zones detected by visual inspection and using electrically stimulated seizures, reveal good performance of the present method.
在本文中,我们研究了颅内脑电 (iEEG) 中空间上远程区域的癫痫发作之间的时滞耦合,以定位致痫区。我们旨在评估在癫痫发作间期进行定量癫痫图分析是否有助于预测癫痫发作期 iEEG 的发作起始区。我们使用小波变换、互相关系数和多重假设检验,提出了一种差分连接图 (DCG) 来表示由癫痫发作间期事件定义的癫痫状态和非癫痫状态之间变化显著的连接。我们提出了基于互信息和多目标优化的后处理方法,通过 DCG 来定位致痫区。该方法应用于五例局灶性癫痫患者的 iEEG 记录。通过视觉检查和电刺激癫痫发作检测到的发作起始区的建议区域的定量比较,表明本方法具有良好的性能。