Suppr超能文献

致发性癫痫样放电的定向差分连通图。

Directed differential connectivity graph of interictal epileptiform discharges.

机构信息

GIPSA-LAB, University of Grenoble, F-38402 Grenoble Cedex, France.

出版信息

IEEE Trans Biomed Eng. 2011 Apr;58(4):884-93. doi: 10.1109/TBME.2010.2099227. Epub 2010 Dec 13.

Abstract

In this paper, we study temporal couplings between interictal events of spatially remote regions in order to localize the leading epileptic regions from intracerebral EEG (iEEG). We aim to assess whether quantitative epileptic graph analysis during interictal period may be helpful to predict the seizure onset zone of ictal iEEG. Using wavelet transform, cross-correlation coefficient, and multiple hypothesis test, we propose a differential connectivity graph (DCG) to represent the connections that change significantly between epileptic and nonepileptic states as defined by the interictal events. Postprocessings based on mutual information and multiobjective optimization are proposed to localize the leading epileptic regions through DCG. The suggested approach is applied on iEEG recordings of five patients suffering from focal epilepsy. Quantitative comparisons of the proposed epileptic regions within ictal onset zones detected by visual inspection and using electrically stimulated seizures, reveal good performance of the present method.

摘要

在本文中,我们研究了颅内脑电 (iEEG) 中空间上远程区域的癫痫发作之间的时滞耦合,以定位致痫区。我们旨在评估在癫痫发作间期进行定量癫痫图分析是否有助于预测癫痫发作期 iEEG 的发作起始区。我们使用小波变换、互相关系数和多重假设检验,提出了一种差分连接图 (DCG) 来表示由癫痫发作间期事件定义的癫痫状态和非癫痫状态之间变化显著的连接。我们提出了基于互信息和多目标优化的后处理方法,通过 DCG 来定位致痫区。该方法应用于五例局灶性癫痫患者的 iEEG 记录。通过视觉检查和电刺激癫痫发作检测到的发作起始区的建议区域的定量比较,表明本方法具有良好的性能。

相似文献

1
Directed differential connectivity graph of interictal epileptiform discharges.
IEEE Trans Biomed Eng. 2011 Apr;58(4):884-93. doi: 10.1109/TBME.2010.2099227. Epub 2010 Dec 13.
2
Reference-based source separation method for identification of brain regions involved in a reference state from intracerebral EEG.
IEEE Trans Biomed Eng. 2013 Jul;60(7):1983-92. doi: 10.1109/TBME.2013.2247401. Epub 2013 Feb 14.
3
Mapping and assessment of epileptogenic foci using frequency-entropy templates.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051903. doi: 10.1103/PhysRevE.76.051903. Epub 2007 Nov 5.
6
It's All About the Networks.
Epilepsy Curr. 2019 May-Jun;19(3):165-167. doi: 10.1177/1535759719843301. Epub 2019 Apr 29.
7
Application of the directed transfer function method to the study of the propagation of epilepsy neural information.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3266-9. doi: 10.1109/IEMBS.2007.4353026.
8
Identification of Interictal Epileptic Networks from Dense-EEG.
Brain Topogr. 2017 Jan;30(1):60-76. doi: 10.1007/s10548-016-0517-z. Epub 2016 Aug 22.
9
Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials.
J Neural Eng. 2016 Apr;13(2):026031. doi: 10.1088/1741-2560/13/2/026031. Epub 2016 Mar 15.
10
Multiscale information for network characterization in epilepsy.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5908-11. doi: 10.1109/IEMBS.2011.6091461.

引用本文的文献

1
Directionality of neural activity in and out of the seizure onset zone in focal epilepsy.
Netw Neurosci. 2025 Jun 30;9(2):798-823. doi: 10.1162/netn_a_00454. eCollection 2025.
2
Interictal Functional Connectivity in Focal Refractory Epilepsies Investigated by Intracranial EEG.
Brain Connect. 2022 Dec;12(10):850-869. doi: 10.1089/brain.2021.0190. Epub 2022 Sep 14.
3
Electrophysiological Brain Connectivity: Theory and Implementation.
IEEE Trans Biomed Eng. 2019 May 7. doi: 10.1109/TBME.2019.2913928.
4
Reference-based source separation method for identification of brain regions involved in a reference state from intracerebral EEG.
IEEE Trans Biomed Eng. 2013 Jul;60(7):1983-92. doi: 10.1109/TBME.2013.2247401. Epub 2013 Feb 14.

本文引用的文献

1
Comparison of five directed graph measures for identification of leading interictal epileptic regions.
Physiol Meas. 2010 Nov;31(11):1529-46. doi: 10.1088/0967-3334/31/11/009. Epub 2010 Oct 15.
2
Network inference with confidence from multivariate time series.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061916. doi: 10.1103/PhysRevE.79.061916. Epub 2009 Jun 11.
3
Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity.
Clin Neurophysiol. 2009 Aug;120(8):1449-56. doi: 10.1016/j.clinph.2009.04.024. Epub 2009 Jul 17.
4
Broadband criticality of human brain network synchronization.
PLoS Comput Biol. 2009 Mar;5(3):e1000314. doi: 10.1371/journal.pcbi.1000314. Epub 2009 Mar 20.
6
Complex network analysis of human ECoG data.
Neurosci Lett. 2008 Dec 12;447(2-3):129-33. doi: 10.1016/j.neulet.2008.09.080. Epub 2008 Oct 5.
7
Emergent network topology at seizure onset in humans.
Epilepsy Res. 2008 May;79(2-3):173-86. doi: 10.1016/j.eplepsyres.2008.02.002. Epub 2008 Mar 24.
8
Preictal short-term plasticity induced by intracerebral 1 Hz stimulation.
Neuroimage. 2008 Feb 15;39(4):1633-46. doi: 10.1016/j.neuroimage.2007.11.005. Epub 2007 Nov 21.
9
Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 2):056211. doi: 10.1103/PhysRevE.75.056211. Epub 2007 May 18.
10
Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG.
Cereb Cortex. 2007 Jun;17(6):1386-93. doi: 10.1093/cercor/bhl049. Epub 2006 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验