Datta Samik, Delius Gustav W, Law Richard, Plank Michael J
Departments of Biology and Mathematics, University of York, Heslington, York, YO10 5DD, UK.
J Math Biol. 2011 Oct;63(4):779-99. doi: 10.1007/s00285-010-0387-z. Epub 2010 Dec 14.
This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.
本文研究了海洋生态系统中经常观察到的幂律稳态的稳定性。考虑了三个动力学系统,它们将生物体的丰度描述为体重和时间的函数:一个“跳跃增长”方程、一个作为广泛使用的麦肯德里克 - 冯·福斯特方程的一阶近似,以及一个作为带有扩散项的麦肯德里克 - 冯·福斯特方程的二阶近似。所有这些都产生了幂律稳态。在参数的某些约束条件下,我们首次推导出了线性化演化算子的特征值谱。这为幂律稳态的稳定性特性提供了新的认识。分析表明,没有扩散项的麦肯德里克 - 冯·福斯特方程的稳态总是不稳定的。此外,数值图表明,带有扩散项的麦肯德里克 - 冯·福斯特方程的特征值谱与跳跃增长方程的特征值谱有很好的近似。当捕食者与猎物的质量比低、饮食广度大且捕食效率高时,稳态更有可能是稳定的。还研究了种群统计随机性的影响,并得出结论,在实际系统中这些影响可能很小。