Suppr超能文献

利用状态相似性和系谱相似性信息预测玉米杂交种表现

Prediction of maize hybrid performance using similarity in state and similarity by descent information.

作者信息

Ferreira D V, Von Pinho R G, Balestre M, Oliveira R L

机构信息

Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brasil.

出版信息

Genet Mol Res. 2010 Dec 14;9(4):2381-94. doi: 10.4238/vol9-4gmr955.

Abstract

We evaluated the efficiency of the best linear unbiased predictor (BLUP) and the influence of the use of similarity in state (SIS) and similarity by descent (SBD) in the prediction of untested maize hybrids. Nine inbred lines of maize were crossed using a randomized complete diallel method. These materials were genotyped with 48 microsatellite markers (SSR) associated with the QTL regions for grain yield. Estimates of four coefficients of SIS and four coefficients of SBD were used to construct the additive genetic and dominance matrices, which were later used in combination with the BLUP for predicting genotypic values and specific combining ability (SCA) in unanalyzed hybrids under simulated unbalance. The values of correlations between the genotypic values predicted and the means observed, depending on the degree of unbalance, ranged from 0.48 to 0.99 for SIS and 0.40 to 0.99 using information from SBD. The results obtained for the SCA ranged from 0.26 to 0.98 using the SIS and 0.001 to 0.990 using the SBD information. It was also observed that the predictions using SBD showed less biased than SIS predictions demonstrating that the predictions obtained by these coefficients (SBD) were closer to the observed value, but were less efficient in the ranking of genotypes. Although the SIS showed a bias due to overestimation of relatedness, this type of coefficient may be used where low values are detected in the SBD in the group of parents because of its greater efficiency in ranking the candidates hybrids.

摘要

我们评估了最佳线性无偏预测法(BLUP)的效率,以及状态相似性(SIS)和系谱相似性(SBD)在预测未经测试的玉米杂交种中的影响。采用随机完全双列杂交法将9个玉米自交系进行杂交。利用与产量相关QTL区域关联的48个微卫星标记(SSR)对这些材料进行基因分型。利用SIS的四个系数估计值和SBD的四个系数估计值构建加性遗传矩阵和显性矩阵,随后将其与BLUP结合使用,以预测模拟不平衡条件下未分析杂交种的基因型值和特殊配合力(SCA)。根据不平衡程度,预测的基因型值与观察到的均值之间的相关性值,SIS的范围为0.48至0.99,使用SBD信息的范围为0.40至0.99。使用SIS得到的SCA结果范围为0.26至0.98,使用SBD信息的范围为0.001至0.990。还观察到,使用SBD进行的预测比SIS预测的偏差更小,这表明通过这些系数(SBD)获得的预测更接近观察值,但在基因型排名方面效率较低。尽管SIS由于对亲缘关系的高估而存在偏差,但在亲本群体中SBD值较低的情况下,这种系数类型可能因其在候选杂交种排名方面具有更高的效率而被使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验