Roberts Michael F, Lightfoot Edwin N, Porter Warren P
Department of Biology, Linfield College, McMinnville, Oregon 97128, USA.
Physiol Biochem Zool. 2011 Jan-Feb;84(1):111-4. doi: 10.1086/658084.
Our recent article (Roberts et al. 2010 ) proposes a mechanistic model for the relation between basal metabolic rate (BMR) and body mass (M) in mammals. The model is based on heat-transfer principles in the form of an equation for distributed heat generation within the body. The model can also be written in the form of the allometric equation BMR = aM(b), in which a is the coefficient of the mass term and b is the allometric exponent. The model generates two interesting results: it predicts that b takes the value 2/3, indicating that BMR is proportional to surface area in endotherms. It also provides an explanation of the physiological components that make up a, that is, respiratory heat loss, core-skin thermal conductance, and core-skin thermal gradient. Some of the ideas in our article have been questioned (Seymour and White 2011 ), and this is our response to those questions. We specifically address the following points: whether a heat-transfer model can explain the level of BMR in mammals, whether our test of the model is inadequate because it uses the same literature data that generated the values of the physiological variables, and whether geometry and empirical values combine to make a "coincidence" that makes the model only appear to conform to real processes.
我们最近的文章(罗伯茨等人,2010年)提出了一个关于哺乳动物基础代谢率(BMR)与体重(M)之间关系的机理模型。该模型基于热传递原理,以体内分布式产热方程的形式呈现。该模型也可以写成异速生长方程BMR = aM(b)的形式,其中a是质量项的系数,b是异速生长指数。该模型产生了两个有趣的结果:它预测b的值为2/3,这表明在恒温动物中BMR与表面积成正比。它还解释了构成a的生理成分,即呼吸热损失、核心-皮肤热传导率和核心-皮肤热梯度。我们文章中的一些观点受到了质疑(西摩和怀特,2011年),这是我们对这些问题的回应。我们具体讨论以下几点:一个热传递模型是否能够解释哺乳动物的BMR水平,我们对该模型的测试是否不充分,因为它使用了与生成生理变量值相同的文献数据,以及几何形状和经验值是否结合起来形成一种“巧合”,使得该模型仅仅看起来符合实际过程。