CNRS, Laboratoire de Glaciologie et Géophysique de l'Environnement, BP 96, 54 Rue Molière, 38402 Saint Martin d'Hères Cédex, France.
J Phys Chem A. 2011 Jan 27;115(3):307-17. doi: 10.1021/jp108907u. Epub 2010 Dec 21.
Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.
甲醛(HCHO)是参与众多关键大气化学过程的物种,这些过程会显著影响大气的氧化能力。由于气态 HCHO 可溶于水,云的水滴和雪的冰晶与气相之间交换 HCHO,因此必须了解 HCHO 在空气、水和冰相之间的分配,以了解其化学性质。本研究提出了 HCHO 在气相与冰和液态水相间分配的热力学公式。对现有蒸气-液相平衡数据的重新分析表明,亨利定律公式的不充分性,因此,我们提出了以下方程来预测平衡时液态水中 HCHO 的摩尔分数 X(HCHO,liq),作为分压 P(HCHO)(Pa)和温度 T(K)的函数:X(HCHO,liq)=1.700×10(-15)×e((8014/T))(P(HCHO))(1.105)。鉴于气相-冰平衡数据的稀缺性,通过将大单晶冰暴露于低 P(HCHO)来测量 HCHO 在冰中的溶解度和扩散系数(D(HCHO))。我们建议的温度范围为 243-266 K 时的 D(HCHO)值为 D(HCHO)=6×10(-12)cm(2)s(-1)。HCHO 在冰中的溶解度遵循 X(HCHO,ice)=9.898×10(-13)×e((4072/T))(P(HCHO))(0.803)的关系。这些数据的外推得出了 H(2)O-HCHO 体系的 P(HCHO)与 1/T 相图。将我们的结果与北极地区高海拔地区 HCHO 在雪和大气之间分配的现有数据进行比较,突出了自然系统中热力学平衡和动力学过程之间的相互作用。