Mukherjee Kushal, Gupta Shalabh, Ray Asok, Wettergren Thomas A
Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):783-91. doi: 10.1109/TSMCB.2010.2092763. Epub 2010 Dec 17.
This paper presents a statistical-mechanics-inspired procedure for optimization of the sensor field configuration to detect mobile targets. The key idea is to capture the low-dimensional behavior of the sensor field configurations across the Pareto front in a multiobjective scenario for optimal sensor deployment, where the nondominated points are concentrated within a small region of the large-dimensional decision space. The sensor distribution is constructed using location-dependent energy-like functions and intensive temperature-like parameters in the sense of statistical mechanics. This low-dimensional representation is shown to permit rapid optimization of the sensor field distribution on a high-fidelity simulation test bed of distributed sensor networks.
本文提出了一种受统计力学启发的程序,用于优化传感器场配置以检测移动目标。关键思想是在多目标场景中捕捉传感器场配置在帕累托前沿上的低维行为,以实现最优传感器部署,其中非支配点集中在大维度决策空间的一个小区域内。在统计力学的意义上,使用依赖位置的类能量函数和类温度强度参数来构建传感器分布。在分布式传感器网络的高保真模拟测试平台上,这种低维表示被证明可以快速优化传感器场分布。