Suppr超能文献

受统计力学启发的用于移动目标检测的传感器场配置优化

Statistical-mechanics-inspired optimization of sensor field configuration for detection of mobile targets.

作者信息

Mukherjee Kushal, Gupta Shalabh, Ray Asok, Wettergren Thomas A

机构信息

Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):783-91. doi: 10.1109/TSMCB.2010.2092763. Epub 2010 Dec 17.

Abstract

This paper presents a statistical-mechanics-inspired procedure for optimization of the sensor field configuration to detect mobile targets. The key idea is to capture the low-dimensional behavior of the sensor field configurations across the Pareto front in a multiobjective scenario for optimal sensor deployment, where the nondominated points are concentrated within a small region of the large-dimensional decision space. The sensor distribution is constructed using location-dependent energy-like functions and intensive temperature-like parameters in the sense of statistical mechanics. This low-dimensional representation is shown to permit rapid optimization of the sensor field distribution on a high-fidelity simulation test bed of distributed sensor networks.

摘要

本文提出了一种受统计力学启发的程序,用于优化传感器场配置以检测移动目标。关键思想是在多目标场景中捕捉传感器场配置在帕累托前沿上的低维行为,以实现最优传感器部署,其中非支配点集中在大维度决策空间的一个小区域内。在统计力学的意义上,使用依赖位置的类能量函数和类温度强度参数来构建传感器分布。在分布式传感器网络的高保真模拟测试平台上,这种低维表示被证明可以快速优化传感器场分布。

相似文献

1
Statistical-mechanics-inspired optimization of sensor field configuration for detection of mobile targets.
IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):783-91. doi: 10.1109/TSMCB.2010.2092763. Epub 2010 Dec 17.
2
Symbolic dynamic filtering and language measure for behavior identification of mobile robots.
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):647-59. doi: 10.1109/TSMCB.2011.2172419. Epub 2011 Nov 3.
3
A dynamic hybrid framework for constrained evolutionary optimization.
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):203-17. doi: 10.1109/TSMCB.2011.2161467. Epub 2011 Aug 4.
4
Evolutionary and principled search strategies for sensornet protocol optimization.
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):163-80. doi: 10.1109/TSMCB.2011.2161466. Epub 2011 Aug 18.
5
Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.
IEEE Trans Cybern. 2013 Jun;43(3):1088-101. doi: 10.1109/TSMCB.2012.2223756. Epub 2012 Nov 10.
6
Flocking of multiple mobile robots based on backstepping.
IEEE Trans Syst Man Cybern B Cybern. 2011 Apr;41(2):414-24. doi: 10.1109/TSMCB.2010.2056917. Epub 2010 Aug 12.
7
Optimal decision rule with class-selective rejection and performance constraints.
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2073-82. doi: 10.1109/TPAMI.2008.239.
8
Probabilistic track coverage in cooperative sensor networks.
IEEE Trans Syst Man Cybern B Cybern. 2010 Dec;40(6):1492-504. doi: 10.1109/TSMCB.2010.2041449. Epub 2010 Mar 15.
9
A small sphere and large margin approach for novelty detection using training data with outliers.
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2088-92. doi: 10.1109/TPAMI.2009.24.
10
A self-learning particle swarm optimizer for global optimization problems.
IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):627-46. doi: 10.1109/TSMCB.2011.2171946. Epub 2011 Nov 4.

引用本文的文献

2
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Sensors (Basel). 2015 Jul 20;15(7):17572-620. doi: 10.3390/s150717572.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验