Suppr超能文献

冬眠灰熊的能量平衡调节肽。

Energy homeostasis regulatory peptides in hibernating grizzly bears.

机构信息

First Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary.

出版信息

Gen Comp Endocrinol. 2011 May 15;172(1):181-3. doi: 10.1016/j.ygcen.2010.12.015. Epub 2010 Dec 25.

Abstract

Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears.

摘要

灰熊(Ursus arctos horribilis)在冬眠期间长达 6 个月处于不活跃状态。它们在食物摄入、体重和能量消耗方面经历了明显的季节性变化。代谢的年度调节机制还不太清楚。在这项研究中,我们测量了 10 只灰熊的血浆胃饥饿素、瘦素、肥胖抑制素和神经肽 Y(NPY)水平,这些激素已知参与能量稳态的调节。在活跃的夏季、早期冬眠和晚期冬眠期间采集血液样本。在活跃期和冬眠期之间,瘦素、肥胖抑制素和 NPY 的血浆水平没有变化。与夏季水平相比,非酰化胃饥饿素和总胃饥饿素浓度在不活跃的冬季期间显著降低。升高的胃饥饿素水平可能有助于在冬眠前增加体重,而冬眠季节低水平的血浆胃饥饿素可能有助于维持少食、低能量利用和行为不活跃。我们的结果表明,胃饥饿素在灰熊冬眠期间的代谢变化和能量稳态调节中发挥了潜在作用。

相似文献

1
Energy homeostasis regulatory peptides in hibernating grizzly bears.
Gen Comp Endocrinol. 2011 May 15;172(1):181-3. doi: 10.1016/j.ygcen.2010.12.015. Epub 2010 Dec 25.
2
Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears.
J Comp Physiol B. 2017 May;187(4):649-676. doi: 10.1007/s00360-016-1050-9. Epub 2016 Dec 16.
3
Remodeling of skeletal muscle myosin metabolic states in hibernating mammals.
Elife. 2024 May 16;13:RP94616. doi: 10.7554/eLife.94616.
5
Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears.
Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H366-71. doi: 10.1152/ajpheart.00234.2008. Epub 2008 May 23.
7
Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).
J Comp Physiol B. 2010 Mar;180(3):465-73. doi: 10.1007/s00360-009-0421-x. Epub 2009 Nov 26.

引用本文的文献

1
Peptidomic Analysis Reveals Seasonal Neuropeptide and Peptide Hormone Changes in the Hypothalamus and Pituitary of a Hibernating Mammal.
ACS Chem Neurosci. 2023 Jul 19;14(14):2569-2581. doi: 10.1021/acschemneuro.3c00268. Epub 2023 Jul 3.
2
Short-Term Administration of Common Anesthetics Does Not Dramatically Change the Endogenous Peptide Profile in the Rat Pituitary.
ACS Chem Neurosci. 2022 Oct 5;13(19):2888-2896. doi: 10.1021/acschemneuro.2c00359. Epub 2022 Sep 20.
3
Phenotypic plasticity and climate change: can polar bears respond to longer Arctic summers with an adaptive fast?
Oecologia. 2018 Feb;186(2):369-381. doi: 10.1007/s00442-017-4023-0. Epub 2017 Dec 1.
4
Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health.
Front Neurol. 2017 Oct 19;8:558. doi: 10.3389/fneur.2017.00558. eCollection 2017.
5
Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears.
J Comp Physiol B. 2017 May;187(4):649-676. doi: 10.1007/s00360-016-1050-9. Epub 2016 Dec 16.
6
Endocrine regulation of bone and energy metabolism in hibernating mammals.
Integr Comp Biol. 2014 Sep;54(3):463-83. doi: 10.1093/icb/icu001. Epub 2014 Feb 19.
7
Comparative endocrinology of leptin: assessing function in a phylogenetic context.
Gen Comp Endocrinol. 2014 Jul 1;203:146-57. doi: 10.1016/j.ygcen.2014.02.002. Epub 2014 Feb 11.

本文引用的文献

1
Central leptin signalling: beyond the arcuate nucleus.
Auton Neurosci. 2010 Aug 25;156(1-2):8-14. doi: 10.1016/j.autneu.2010.05.008. Epub 2010 Jun 13.
2
Plasma ghrelin concentrations change with physiological state in a sciurid hibernator (Spermophilus lateralis).
Gen Comp Endocrinol. 2010 Apr 1;166(2):372-8. doi: 10.1016/j.ygcen.2009.12.006. Epub 2009 Dec 11.
3
Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).
J Comp Physiol B. 2010 Mar;180(3):465-73. doi: 10.1007/s00360-009-0421-x. Epub 2009 Nov 26.
4
Ghrelin: from gene to physiological function.
Results Probl Cell Differ. 2010;50:185-205. doi: 10.1007/400_2009_28.
5
The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14069-74. doi: 10.1073/pnas.0903090106. Epub 2009 Aug 4.
6
Is desacyl ghrelin a modulator of food intake?
Peptides. 2009 May;30(5):991-4. doi: 10.1016/j.peptides.2009.01.019. Epub 2009 Feb 7.
7
Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats.
Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R575-85. doi: 10.1152/ajpregu.00448.2006. Epub 2006 Aug 17.
8
Obestatin alters sleep in rats.
Neurosci Lett. 2006 Aug 14;404(1-2):222-6. doi: 10.1016/j.neulet.2006.05.053. Epub 2006 Jun 23.
9
Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats.
Brain Res. 2006 May 9;1088(1):131-40. doi: 10.1016/j.brainres.2006.02.072. Epub 2006 May 2.
10
Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake.
Science. 2005 Nov 11;310(5750):996-9. doi: 10.1126/science.1117255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验