Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):828-33. doi: 10.1073/pnas.1018022108. Epub 2010 Dec 27.
Prolonged AMPA-receptor blockade in hippocampal neuron cultures leads to both an increased expression of GluA1 postsynaptically and an increase in vesicle pool size and turnover rate presynaptically, adaptive changes that extend beyond simple synaptic scaling. As a molecular correlate, expression of the β Ca(2+)/CaM-dependent kinase type II (βCaMKII) is increased in response to synaptic inactivity. Here we set out to clarify the role of βCaMKII in the various manifestations of adaptation. Knockdown of βCaMKII by lentiviral-mediated expression of shRNA prevented the synaptic inactivity-induced increase in GluA1, as did treatment with the CaM kinase inhibitor KN-93, but not the inactive analog KN-92. These results demonstrate that, spurred by AMPA-receptor blockade, up-regulation of βCaMKII promotes increased GluA1 expression. Indeed, transfection of βCaMKII, but not a kinase-dead mutant, increased GluA1 expression on dendrites and elevated vesicle turnover (Syt-Ab uptake), mimicking the effect of synaptic inactivity on both sides of the synapse. In cells with elevated βCaMKII, relief of synaptic-activity blockade uncovered an increase in the frequency of miniature excitatory postsynaptic currents that could be rapidly and fully suppressed by PhTx blockade of GluA1 receptors. This increased mini frequency involved a genuine presynaptic enhancement, not merely an increased abundance of synapses. This finding suggests that Ca(2+) flux through GluA1 receptors may trigger the acute release of a retrograde messenger. Taken together, our results indicate that synaptic inactivity-induced increases in βCaMKII expression set in motion a series of events that culminate in coordinated pre- and postsynaptic adaptations in synaptic transmission.
在海马神经元培养物中,AMPA 受体的持续阻断会导致谷氨酸受体 1(GluA1)在后突触表达增加,以及囊泡库大小和周转率在前突触增加,这些适应性变化超出了简单的突触缩放范围。作为一个分子相关物,β Ca(2+)/CaM 依赖性激酶 II 型(βCaMKII)的表达在突触失活时增加。在这里,我们着手阐明βCaMKII 在各种适应表现中的作用。通过慢病毒介导的 shRNA 表达对βCaMKII 的敲低阻止了突触失活诱导的 GluA1 增加,CaM 激酶抑制剂 KN-93 的处理也是如此,但不是无活性类似物 KN-92。这些结果表明,在 AMPA 受体阻断的刺激下,βCaMKII 的上调促进了 GluA1 的表达增加。事实上,βCaMKII 的转染,但不是激酶失活突变体,增加了树突上的 GluA1 表达,并提高了囊泡周转率(Syt-Ab 摄取),模拟了突触失活对突触两侧的影响。在βCaMKII 升高的细胞中,解除突触活动阻断会导致兴奋性突触后电流的微小频率增加,这种增加可以通过 PhTx 阻断 GluA1 受体迅速而完全地抑制。这种增加的 mini 频率涉及到真正的突触前增强,而不仅仅是突触数量的增加。这一发现表明,GluA1 受体通过 Ca(2+)通量可能触发逆行信使的急性释放。总之,我们的结果表明,突触失活诱导的βCaMKII 表达增加引发了一系列事件,最终导致突触传递中协调的前突触和后突触适应。