Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E8.
Biochemistry. 2011 Feb 22;50(7):1162-73. doi: 10.1021/bi101435c. Epub 2011 Jan 27.
Prions are believed to spontaneously convert from a native, monomeric highly helical form (called PrP(c)) to a largely β-sheet-rich, multimeric and insoluble aggregate (called PrP(sc)). Because of its large size and insolubility, biophysical characterization of PrP(sc) has been difficult, and there are several contradictory or incomplete models of the PrP(sc) structure. A β-sheet-rich, soluble intermediate, called PrP(β), exhibits many of the same features as PrP(sc) and can be generated using a combination of low pH and/or mild denaturing conditions. Studies of the PrP(c) to PrP(β) conversion process and of PrP(β) folding intermediates may provide insights into the structure of PrP(sc). Using a truncated, recombinant version of Syrian hamster PrP(β) (shPrP(90-232)), we used NMR spectroscopy, in combination with other biophysical techniques (circular dichroism, dynamic light scattering, electron microscopy, fluorescence spectroscopy, mass spectrometry, and proteinase K digestion), to characterize the pH-driven PrP(c) to PrP(β) conversion process in detail. Our results show that below pH 2.8 the protein oligomerizes and conversion to the β-rich structure is initiated. At pH 1.7 and above, the oligomeric protein can recover its native monomeric state through dialysis to pH 5.2. However, when conversion is completed at pH 1.0, the large oligomer "locks down" irreversibly into a stable, β-rich form. At pH values above 3.0, the protein is amenable to NMR investigation. Chemical shift perturbations, NOE, amide line width, and T(2) measurements implicate the putative "amylome motif" region, "NNQNNF" as the region most involved in the initial helix-to-β conversion phase. We also found that acid-induced PrP(β) oligomers could be converted to fibrils without the use of chaotropic denaturants. The latter finding represents one of the first examples wherein physiologically accessible conditions (i.e., only low pH) were used to achieve PrP conversion and fibril formation.
朊病毒被认为会自发地从一种天然的、单体、高度螺旋的形式(称为 PrP(c))转变为富含β-折叠、多聚体和不溶的聚集体(称为 PrP(sc))。由于其体积大和不溶性,PrP(sc) 的生物物理特性的表征一直很困难,并且有几个关于 PrP(sc)结构的矛盾或不完整的模型。一种富含β-折叠、可溶性的中间产物,称为 PrP(β),表现出许多与 PrP(sc)相同的特征,可以通过低 pH 和/或温和变性条件的组合来产生。对 PrP(c)到 PrP(β)转化过程和 PrP(β)折叠中间体的研究可能为 PrP(sc)的结构提供线索。使用叙利亚仓鼠 PrP(β)的截断重组版本(shPrP(90-232)),我们使用 NMR 光谱学,结合其他生物物理技术(圆二色性、动态光散射、电子显微镜、荧光光谱学、质谱和蛋白酶 K 消化),详细描述了 pH 驱动的 PrP(c)到 PrP(β)转化过程。我们的结果表明,在 pH 值低于 2.8 时,蛋白质会发生寡聚化,并且开始向富含β的结构转化。在 pH 值为 1.7 及以上时,寡聚体蛋白可以通过透析至 pH 值 5.2 恢复其天然单体状态。然而,当在 pH 值 1.0 时完成转化时,大的寡聚物“锁定”成不可逆的稳定的富含β的形式。在 pH 值高于 3.0 时,蛋白质可进行 NMR 研究。化学位移扰动、NOE、酰胺线宽和 T(2)测量表明,假定的“淀粉样肽基序”区域“NNQNNF”是最参与初始螺旋到β转换阶段的区域。我们还发现,酸诱导的 PrP(β)寡聚体可以在不使用变构变性剂的情况下转化为原纤维。后一种发现代表了第一个使用生理上可及的条件(即仅低 pH)实现 PrP 转化和原纤维形成的例子之一。